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Abstract: In this paper, we present a control architecture for the set-point stabilization of
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The proposed controller consists of a switching PID term and a term that robustly compensates
for the Stribeck effect. It is shown that the controller asymptotically stabilizes the set-point, and
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to be robust for unknown static friction, and an uncertain contribution of the Stribeck effect.
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1. INTRODUCTION

In this paper, we present a new control method for set-
point stabilization of motion systems subject to static
friction and a velocity-weakening (i.e., Stribeck) effect. It
is well known that friction is a performance limiting factor
in high-precision positioning systems. Indeed, the presence
of friction can induce non-zero steady state position er-
rors, friction-induced limit cycling (hunting) and large set-
tling times (Armstrong-Hélouvry et al. [1994]). Moreover,
friction-induced stick-slip vibrations lead to kinetic en-
ergy dissipation, noise, excessive wear, and premature fail-
ure of machine parts (Armstrong-Hélouvry et al. [1994]).
Throughout the literature, many different approaches have
been presented that attempt to compensate for (or reduce)
the effects of friction in order to achieve high precision
positioning and/or superior trajectory tracking. An ob-
vious solution is to alter the mechatronic design of the
positioning equipment early in the development phase
such that friction is minimized (by, e.g., the use of high-
end bearings, magnetic stages or piezo-electric actuation).
Such low-friction mechatronic designs are, however, typ-
ically expensive. Therefore, it is appealing to deal with
friction via smart (and cheap) control software, where one
may try to compensate for friction, or to design control
algorithms that achieve high positioning accuracy despite
apparent frictional effects.

Two classes of control architectures that deal with fric-
tion can be distinguished, namely friction-compensation
techniques, and non-compensation-based techniques. The
former relies on the compensation of friction by means
of including a (parametric) friction model either in a
feedback or a feedforward loop in the control system, see
e.g., Armstrong-Hélouvry et al. [1994], Putra et al. [2007],
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Makkar et al. [2007], Olsson and Astrom [1996], Márton
and Lantos [2009], Freidovich et al. [2010], Rijlaarsdam
et al. [2012]. A general drawback of these friction compen-
sation techniques is the difficulty of developing an accurate
friction model with limited complexity, suitable for on-
line control implementation. Moreover, as modeling errors
are inevitable, positioning accuracy is compromised due to
over- or undercompensation of the friction, see Putra et al.
[2007]. In addition, the friction characteristic may change
due to changing operating conditions (e.g., temperature or
wear), which may increase the friction model mismatch.
To overcome the latter problem, adaptive control, see e.g.,
Amthor et al. [2010], Na et al. [2014], Panteley et al.
[1998], may introduce a certain level of robustness against
changing or uncertain friction conditions by a continuous
online update of the parameters of the friction model used
in the control law. Modeling errors, however, still remain
and deteriorate the positioning performance.

An advantage of non-compensation-based schemes is that
they do not require (accurate) knowledge of the friction
characteristic. This inherently induces a certain level of
robustness for uncertain friction or changing operating
conditions, but these control architectures exhibit cer-
tain characteristic drawbacks. PID control of motion sys-
tems subject to friction with the Stribeck effect may lead
to hunting limit cycling, see e.g., Armstrong-Hélouvry
et al. [1994], Hensen et al. [2003]. Integrator action al-
lows the system to escape the stick phase, since it even-
tually compensates for the static friction. However, due
to the velocity-weakening Stribeck effect, the friction is
overcompensated in the slip phase, which results in in a
stick-slip oscillation around the set-point. Dithering-based
approaches (see e.g., Armstrong-Hélouvry et al. [1994],
Thomsen [1999]) use high-frequent vibrations to smoothen
the discontinuity induced by the friction, thereby risking
the excitation of high-frequency system dynamics. The
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same drawback holds for impulsive control (see e.g., van de
Wouw and Leine [2012]), where impulsive control signals
are employed when the system ‘sticks’ at a non-zero posi-
tion error, such that the system escapes such a stick phase.

In this work, we present a control technique that guar-
antees set-point stabilization of a motion system subject
to static friction and the Stribeck effect. The proposed
control architecture will be shown to be robust for un-
known, possibly slowly time-varying, static friction and
an uncertain Stribeck effect. The controller consists of
a switching PID controller, combined with an auxiliary
control term that robustly compensates the Stribeck effect,
thereby eliminating hunting limit cycling and guaranteeing
asymptotic set-point stability.

This article is organized as follows. In Section 2, the
considered control problem is specified and Section 3
covers the controller design. Next, a stability analysis is
presented in Section 4. The effectiveness of the presented
controller is illustrated by means of a numerical example
in Section 5. A conclusion is presented in Section 6.

2. CONTROL PROBLEM FORMULATION

Consider a motion system consisting of an inertia m,
subject to static friction including the velocity-weakening
effect, as schematically visualized in Fig. 1. The system is
described by the dynamics

ẋ1(t) = x2(t), (1a)

ẋ2(t) =
1

m
(Ff − u(t)) . (1b)

The position of the inertia is denoted by x1, its velocity by
x2, and the control input is denoted by u. We assume that
the set-point is the origin, i.e., x1 = x2 = 0. The friction
force is represented by Ff , which consists of a set-valued
Coulomb friction contribution with an uncertain static
friction Fs, and a smooth, velocity-dependent contribution
f(x2), inducing a velocity-weakening effect, see Fig. 2, i.e.,

Ff ∈ −FsSign(x2) + f(x2), (2)

where the set-valued sign function is defined as

Sign(y) :=



−1, y < 0

[−1, 1], y = 0

1, y > 0

, (3)

written with a capital S. The classical sign function is
defined as

sign(y) :=



−1, y < 0

0, y = 0

1, y > 0

, (4)

m

Ff

u

x

g

Fig. 1. Schematic representation of the motion system
subject to friction.

written with a lower-case s, which will also be used in
the controller later on. The model in (1), (2) together
constitutes a differential inclusion. The smooth part of
the friction f(x2) is also considered to be potentially
uncertain. The only assumption adopted for f is that it
satisfies the inequality

x2f(x2) ≤ −|x2|F̃
(
e−δ|x2| − 1

)
, (5)

for all x2 ∈ R. Herein, F̃ ∈ R>0 is chosen such that
the magnitude of the velocity-dependent friction part is
bounded by F̃ , as visualized in the right subplot of Fig. 2.
Although alternative ways of defining a bound on the
velocity-dependent curve may exist, the benefit of the
inequality (5) is the fact that it is characterized by only two

parameters, namely F̃ , and a parameter δ ∈ R>0, which
embeds a velocity-dependency in this bound, while still
allowing to characterize the Stribeck (velocity-weakening)
effect commonly present in frictional contact.

Remark 1. Although not explicitly taken into account
here, viscous friction can also be added to the friction
model in (2) and the developments of this paper will still
be valid.

Remark 2. Due to changing operating conditions, the
friction characteristic may vary over time. The controller
presented in this paper is robust for quasi-constant fric-
tion, i.e., the static friction Fs and the velocity-dependent
contribution f(x2) may be time-varying, but only on a
slower time scale than that of the closed-loop dynamics.

Let us now pose the following assumptions on the control
system and the bound on the smooth part of the friction
(5).

Assumption 1. Prior to activation of the controller
presented in this article, the system is regulated by a PD
controller to the corresponding stick set, see e.g., Putra
et al. [2007]. A PD-controlled inertia subject to friction
as described by (1), (2) exhibits an equilibrium (stick) set
given by Es := {|x1| ≤ Fs/Kp, x2 = 0}, where Kp ∈ R>0

represents the proportional gain of this PD controller,
and solutions typically converge to this equilibrium set in
finite time. Therefore, the initial conditions for our control
problem are assumed to satisfy [x1(0), x2(0)]

� ∈ Es.
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Fig. 2. An example of a friction characteristic (left) that
can be decomposed into static friction (center) and a
velocity-dependent Stribeck curve (right). The dashed
line indicates the usage of the bound (5).
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Assumption 2. It is assumed that, firstly, the bound in
(5) holds and, secondly, that 0 < F̃ ≤ Fs, such that the
bound on the total friction characteristic∣∣∣−FsSign(x2)− F̃

(
e−δ|x2| − 1

)
sign(x2)

∣∣∣ ≥ 0, (6)

represents a friction characteristic that does not induce
negative damping 1 , see the dashed line in the left subplot
of Fig. 2.

The control problem considered in this paper is stated as
follows.

Problem 1. Design a control law for u of system (1), such
that, given Assumptions 1-2, the set-point [x1, x2]

� =
[0, 0]� is asymptotically stabilized.

3. CONTROLLER DESIGN

In order to solve Problem 1, a controller that consists of
a switched PID term v, and a term w that robustly com-
pensates for velocity-dependent and uncertain frictional
effects (including the Stribeck effect), is employed. Inte-
grator action plays an important role, as it is required to
compensate for the uncertain static friction such that the
system can escape the stick phase. The switching dynamic
control law is given by

ẋ3 =

{
|x1|, if t < t1 ∨ (t ≥ t1 ∧ x3 < x̄3) ,

0, if t ≥ t1 ∧ x3 = x̄3,
(7a)

v = Kpx1 +Kdx2

−Kix3 (sign(x2)− (1− |sign(x2)|) sign(x1)) ,
(7b)

w = −F̃
(
e−δ|x2| − 1

)
sign(x2), (7c)

u = v + w, (7d)

where

x̄3 = x3(t1) +
Kp|x1(t1)|

Ki
, (7e)

t1 := max {t ∈ R≥0 | x2(s) = 0

∧ ẋ2(s) = 0, ∀s ∈ [0, t]} ,
(7f)

with initial condition x3(0) = 0. The proportional, deriva-
tive, and integral control gains of the PID controller in
(7b) are denoted by Kp, Kd, Ki ∈ R>0, respectively (the
proportional and derivative control gains should be tuned
such that the transient performance for t < 0 is acceptable,
see Assumption 1). The integrator dynamics (7a) result
in a saturated integrator state x3 ∈ R≥0, which cannot
exceed a maximum value defined by x̄3, such that it only
compensates for the static friction. Its value is determined
at the first stick-slip transition of the system, at t = t1,
see (7f). Note that the integrator takes an anti-windup-like
design w.r.t. the static friction, and that the case logic in
(7a) is partially time-dependent, since x̄3 is undefined for
t < t1. Moreover, in this particular design of the integrator
the absolute value of the position error is integrated over
time and thus x3 ≥ 0 holds for all t ≥ 0. The switching
term sign(x2) − (1− |sign(x2)|) sign(x1) in (7b) is then
employed to determine the sign of the integrator control

1 Note that in (6), both the set-valued as the classical sign functions
appear, as defined in (3) and (4), respectively.

force. If x2 �= 0, the sign of the velocity x2 determines
the sign of the integrator control force, whereas the sign
of the position error x1 determines the sign of the force
for x2 = 0. In this way, the contribution of integrator
action is still present when the system is in the stick
phase (x2 = 0). A conventional PID controller, where
the position error is integrated over time (not its absolute
value), does not employ such a term. If overshooting the
set-point occurs, the conventional integrator state has to
change sign by gradually depleting and refilling its buffer
in order to provide integral action in the correct direction.
This process is slow, and leads to large settling times.
The proposed controller, instead, leads to considerably
faster convergence when overshoot of the set-point occurs,
by using switching controls. This particular design also
supports set-point stability, as we will explain in the next
section.

4. STABILITY ANALYSIS

In this section, we show that the controller presented in
the previous section asymptotically stabilizes the set-point
[x1, x2]

� = [0, 0]�, i.e., it provides a solution to Problem
1. To this end, we present the following theorem. Note that
the initial condition x3(0) = 0 represents a controller reset
and is required to cope with varying static friction between
subsequent set-point operations.

Theorem 1. Consider the closed-loop system (1), (2),
(7), with initial conditions 0 < |x1(0)| ≤ Fs/Kp, x2(0) =
x3(0) = 0, satisfying Assumption 1-2. Moreover, consider
the augmented state vector χ, defined as

χ := [x1, x2, x3]
� ∈ Θ := R× R× R≥0 ⊂ R3. (8)

The set C, given by

C :=

{
χ ∈ Θ

∣∣∣∣ x1 = 0, x2 = 0, x3 ≤ Fs

Ki

}
,

is an asymptotically stable equilibrium set of the considered
closed-loop system.

Proof. The proof consists of two parts. First, we will
explain the role of the (saturated) integrator state x3, as
defined in (7a) and we will show that the bound x3 ≤
Fs/Ki holds. We will then use this fact to show that C
is indeed the equilibrium set of the closed-loop system.
Next, we show that the set C is asymptotically stable,
using a Lyapunov-like stability analysis and a LaSalle-type
invariance argument.

Recall the definition of the integrator state x3, as in (7a),
and the definition of its saturated value x̄3 in (7e). At
t = 0, the system is in the stick phase with a (non-zero)
position error, see Assumption 1. Since the system is in
the stick phase and x3(0) = 0, the static friction level
Fs exceeds the (absolute value of the) control force for
t ∈ [0, t1), i.e.,

Fs > Kp|x1(t)|+Kix3(t), t ∈ [0, t1), (9)

with t1 defined in (7f). Note that x1(t) = x1(0) for
t ∈ [0, t1). At t = t1, a transition from the stick phase
to the slip phase takes place, which means that the static
friction is exactly compensated, i.e.,

Fs = Kp|x1(t1)|+Kix3(t1).

From the above equality, the following expression for the
integrator state can be derived:
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Assumption 2. It is assumed that, firstly, the bound in
(5) holds and, secondly, that 0 < F̃ ≤ Fs, such that the
bound on the total friction characteristic∣∣∣−FsSign(x2)− F̃

(
e−δ|x2| − 1

)
sign(x2)

∣∣∣ ≥ 0, (6)

represents a friction characteristic that does not induce
negative damping 1 , see the dashed line in the left subplot
of Fig. 2.

The control problem considered in this paper is stated as
follows.

Problem 1. Design a control law for u of system (1), such
that, given Assumptions 1-2, the set-point [x1, x2]

� =
[0, 0]� is asymptotically stabilized.

3. CONTROLLER DESIGN

In order to solve Problem 1, a controller that consists of
a switched PID term v, and a term w that robustly com-
pensates for velocity-dependent and uncertain frictional
effects (including the Stribeck effect), is employed. Inte-
grator action plays an important role, as it is required to
compensate for the uncertain static friction such that the
system can escape the stick phase. The switching dynamic
control law is given by

ẋ3 =

{
|x1|, if t < t1 ∨ (t ≥ t1 ∧ x3 < x̄3) ,

0, if t ≥ t1 ∧ x3 = x̄3,
(7a)

v = Kpx1 +Kdx2

−Kix3 (sign(x2)− (1− |sign(x2)|) sign(x1)) ,
(7b)

w = −F̃
(
e−δ|x2| − 1

)
sign(x2), (7c)

u = v + w, (7d)

where

x̄3 = x3(t1) +
Kp|x1(t1)|

Ki
, (7e)

t1 := max {t ∈ R≥0 | x2(s) = 0

∧ ẋ2(s) = 0, ∀s ∈ [0, t]} ,
(7f)

with initial condition x3(0) = 0. The proportional, deriva-
tive, and integral control gains of the PID controller in
(7b) are denoted by Kp, Kd, Ki ∈ R>0, respectively (the
proportional and derivative control gains should be tuned
such that the transient performance for t < 0 is acceptable,
see Assumption 1). The integrator dynamics (7a) result
in a saturated integrator state x3 ∈ R≥0, which cannot
exceed a maximum value defined by x̄3, such that it only
compensates for the static friction. Its value is determined
at the first stick-slip transition of the system, at t = t1,
see (7f). Note that the integrator takes an anti-windup-like
design w.r.t. the static friction, and that the case logic in
(7a) is partially time-dependent, since x̄3 is undefined for
t < t1. Moreover, in this particular design of the integrator
the absolute value of the position error is integrated over
time and thus x3 ≥ 0 holds for all t ≥ 0. The switching
term sign(x2) − (1− |sign(x2)|) sign(x1) in (7b) is then
employed to determine the sign of the integrator control

1 Note that in (6), both the set-valued as the classical sign functions
appear, as defined in (3) and (4), respectively.

force. If x2 �= 0, the sign of the velocity x2 determines
the sign of the integrator control force, whereas the sign
of the position error x1 determines the sign of the force
for x2 = 0. In this way, the contribution of integrator
action is still present when the system is in the stick
phase (x2 = 0). A conventional PID controller, where
the position error is integrated over time (not its absolute
value), does not employ such a term. If overshooting the
set-point occurs, the conventional integrator state has to
change sign by gradually depleting and refilling its buffer
in order to provide integral action in the correct direction.
This process is slow, and leads to large settling times.
The proposed controller, instead, leads to considerably
faster convergence when overshoot of the set-point occurs,
by using switching controls. This particular design also
supports set-point stability, as we will explain in the next
section.

4. STABILITY ANALYSIS

In this section, we show that the controller presented in
the previous section asymptotically stabilizes the set-point
[x1, x2]

� = [0, 0]�, i.e., it provides a solution to Problem
1. To this end, we present the following theorem. Note that
the initial condition x3(0) = 0 represents a controller reset
and is required to cope with varying static friction between
subsequent set-point operations.

Theorem 1. Consider the closed-loop system (1), (2),
(7), with initial conditions 0 < |x1(0)| ≤ Fs/Kp, x2(0) =
x3(0) = 0, satisfying Assumption 1-2. Moreover, consider
the augmented state vector χ, defined as

χ := [x1, x2, x3]
� ∈ Θ := R× R× R≥0 ⊂ R3. (8)

The set C, given by

C :=

{
χ ∈ Θ

∣∣∣∣ x1 = 0, x2 = 0, x3 ≤ Fs

Ki

}
,

is an asymptotically stable equilibrium set of the considered
closed-loop system.

Proof. The proof consists of two parts. First, we will
explain the role of the (saturated) integrator state x3, as
defined in (7a) and we will show that the bound x3 ≤
Fs/Ki holds. We will then use this fact to show that C
is indeed the equilibrium set of the closed-loop system.
Next, we show that the set C is asymptotically stable,
using a Lyapunov-like stability analysis and a LaSalle-type
invariance argument.

Recall the definition of the integrator state x3, as in (7a),
and the definition of its saturated value x̄3 in (7e). At
t = 0, the system is in the stick phase with a (non-zero)
position error, see Assumption 1. Since the system is in
the stick phase and x3(0) = 0, the static friction level
Fs exceeds the (absolute value of the) control force for
t ∈ [0, t1), i.e.,

Fs > Kp|x1(t)|+Kix3(t), t ∈ [0, t1), (9)

with t1 defined in (7f). Note that x1(t) = x1(0) for
t ∈ [0, t1). At t = t1, a transition from the stick phase
to the slip phase takes place, which means that the static
friction is exactly compensated, i.e.,

Fs = Kp|x1(t1)|+Kix3(t1).

From the above equality, the following expression for the
integrator state can be derived:
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x3(t1) =
Fs −Kp|x1(t1)|

Ki
. (10)

Recall that x̄3, see (7e), is defined as

x̄3 = x3(t1) +
Kp|x1(t1)|

Ki
> x3(t1). (11)

Substitution of (10) in (11) yields

x̄3 =
Fs

Ki
. (12)

As a result, (7a) implies that

x3 ≤ Fs

Ki
, (13)

i.e., boundedness of the integrator state x3. Note that
x3 = x̄3 results in exact compensation of the static friction.

Let us now show that C is the equilibrium set of the
closed-loop system (1), (2), (7). For x3 < x̄3, it follows
directly from (1), (2), (7) that x1 = x2 = 0 and thus C is
the equilibrium set. For x3 = x̄3, this is not immediately
evident. In equilibrium, x2 = 0 (see (1b)) then implies

Kpx1 ∈ −FsSign(0)−Kix̄3sign(x1). (14)

Substitution of (12) in (14) yields

Kpx1 ∈ −FsSign(0)− Fssign(x1), (15)

which only holds true if x1 = 0, i.e., 0 ∈ −FsSign(0).
Illustratively, for x1 �= 0 it holds true that

Kpx1 �∈ −FsSign(0)− Fssign(x1), for x1 �= 0,

and thus C is the equilibrium set of the closed-loop system.

We now proceed with step 2 of the proof. Since solutions
can only exist for x3 ≤ x̄3, it remains to show that x1 and
x2 asymptotically tend to zero. To this end, consider the
following positive semi-definite function V : R2 → R.

V (x1, x2) =
1

2
Kpx

2
1 +

1

2
mx2

2.

The time-derivative of V satisfies

V̇ ∈ Kpx1x2 − x2FsSign(x2) + x2f(x2)−Kpx1x2

−Kdx
2
2 +Kix2x3 (sign(x2)− (1− |sign(x2)|)sign(x1))

+ x2F̃
(
e−δ|x2| − 1

)
sign(x2).

(16)

By application of (5), we obtain, after further simplifying
(16):

V̇ ≤ −x2 (FsSign(x2)−Kix3sign(x2))−Kdx
2
2.

It is clear that V̇ = 0 for x2 = 0. For x2 �= 0, using (13),
it is concluded that x2 (FsSign(x2)−Kix3sign(x2)) ≥ 0.
Consequently,

V̇ ≤ −Kdx
2
2, x2 �= 0.

Together with V̇ = 0 for x2 = 0, this implies stability of
the set C, but not yet asymptotic stability.

Next, we will use a LaSalle argument for non-smooth
systems (Shevitz and Paden [1994]) to prove asymptotic

stability of the set C. In particular, we will show that V̇ = 0
can occur for x1 �= 0, but that V̇ = 0 can only remain true
for x1 = 0.

Consider the set

E0 := {χ ∈ Θ | V̇ = 0} = {χ ∈ Θ | x2 = 0}.
According to LaSalle’s Invariance princple, every solu-
tion starting in Θ converges to the largest invariant set

EM ⊂ E0 for t → ∞ (Shevitz and Paden [1994]). Let
[x1(t), x2(t), x3(t)]

� be a solution of the closed-loop
system (1), (2), (7) that belongs identically to E0, i.e.,
x2 ≡ 0 ⇒ ẋ2 ≡ 0, which, in turn, implies

0 ∈ −FsSign(0)−Kpx1 −Kix3sign(x1). (17)

In order to find the set EM , the values of x1 for which
(17) holds true must be determined. To this end, we will
consider the cases x1 = 0, x1 > 0, and x1 < 0 separately,
to determine whether or not (17) holds.

Case 1: x1 = 0

For x1 = 0, (17) holds since indeed 0 ∈ −FsSign(0).

Case 2: x1 > 0

For x1 > 0 and x2 = 0, the algebraic inclusion in (17) can
be expressed as the following two inequalities:

Kpx1 +Kix3 ≥ −Fs, (18a)

Kpx1 +Kix3 ≤ Fs. (18b)

If both inequalities hold for any x1 > 0, then (17) holds
as well for that x1 > 0. Inequality (18a) holds true for
all values of x3, since x3 ≥ 0 and x1 > 0. Inequality

(18b), however, only holds true for x3 ≤ Fs−Kpx1

Ki
. Since

the system is in stick (x2 = 0) with a positive, non-
zero position error, i.e., x1 > 0, we have x3 < x̄3

and, consequently, ẋ3 = |x1| (see (7a)). As a result,
the integrator state x3 will keep increasing such that

eventually x3 >
Fs−Kpx1

Ki
. At this point, the control force

has exceeded the static friction such that the system is no
longer in the stick phase. As a result, (18b), and thus (17),
cannot remain true for any x1 > 0.

Case 3: x1 < 0

For the case x1 < 0 and x2 = 0, a similar reasoning to
Case 2 holds.

From the above analysis, we conclude that the largest
invariant set in E0 is given by

EM =

{
χ ∈ Θ | x1 = 0, x2 = 0, x3 ≤ Fs

Ki

}
,

and thus the set C is attractive and asymptotically stable.
This concludes the proof for Theorem 1.

Remark 3. We care to stress that Theorem 1 guarantees
asymptotic stability of the set C (for which x1 = x2 =
0) for a whole range of friction characteristics. For the
velocity-dependent part of the friction, it can be concluded
that for any friction law that lies in the grey area in Fig. 2,
stability is guaranteed. In this figure, the actual and model
values of the static friction level Fs match (for the sake of
illustration). However, the control algorithm guarantees
robust stability for any bounded static friction level as long
as the inequality in (6) is satisfied, which in fact, given a

choice for F̃ , expresses a lower bound for Fs.

5. ILLUSTRATIVE EXAMPLE

In this section, the working principle and effectiveness of
the presented control architecture are illustrated by means
of an example. To this end, consider the motion system of
Fig. 1, described by the closed-loop dynamics (1), (2), (7),
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with parameter values m = 1 kg, g = 9.81 m/s2, Kp = 18,
Kd = 1, and either Ki = 10, Ki = 20 or Ki = 30. The true
friction characteristic, given by (2), satisfies Fs = µmg,
with µ = 0.1 the friction coefficient. The true Stribeck
curve is assumed to satisfy

f(x2) = ((µmg − F )ηx2) (1 + η|x2|)−1
, (19)

with F = 0.5 N the true dynamic friction, and η =
20 the Stribeck shape parameter. This results in the
particular friction characteristic visualized in Fig. 2, with
a pronounced Stribeck effect. The bound on the Stribeck
curve satisfies (5), with δ = 25 and F̃ = 0.55 N, which
results in the particular bound as presented in Fig. 2.

A numerical time-stepping routine (see Acary and Brogliato
[2008]) is employed to numerically compute solutions of
the closed-loop system. The initial conditions are x1(0) =
−0.05, x2(0) = x3(0) = 0, satisfying Assumption 1. The
response of the closed-loop system is visualized in Fig. 3,
for both Ki = 10, Ki = 20, and Ki = 30, to illustrate the
influence of the integral gain Ki on the transient response.

For Ki = 10, the response approaches the set-point x1 =
0 asymptotically without overshoot, and with the only
period of sticking occurring immediately after t = 0. The
integrator state x3 approaches x̄3 = Fs/Ki asymptotically,
thereby effectively compensating for the unknown static
friction. The corresponding control forces v and w are
presented in Fig. 4. The total control signal v + w is
smooth, such that excitation of high-frequency system
dynamics is prevented due to the absence of discontinuous
control signals.

For Ki = 20, the response converges faster to the set-
point x1 = 0 compared to the response with Ki = 10,
but now with intermediate periods of stick (i.e., x2 = 0),
see the zoomed box in the middle subplot of Fig. 3. This
is consistent with the LaSalle argument discussed in the
previous section, as the response may arrive in the stick
phase with a non-zero position error, but it cannot remain
there due to the integrator action. The corresponding
control force, see Fig. 4, is continuous but non-smooth,
due to the non-smooth contribution of w caused by the
sticking instants.

For Ki = 30, the response overshoots the set-point x1 =
0, but still converges to the set-point (in compliance
with Theorem 1). This integrator tuning results in a
saturated integrator state (i.e, x3 = x̄3), see the zoomed
box in the lower subplot of Fig. 3, and a discontinuous
control signal v, as can be seen in Fig. 5. Since the
discontinuity in the integrator control force occurs only
at velocity reversals, there will be no excitation of high-
frequency system dynamics, as illustrated by the following
reasoning. It holds that x3 ≤ Fs/Ki, so the integrator
action compensates (partially) for the static friction. The
static friction changes sign upon velocity reversal, and so
does the integrator action. If x3 = Fs/Ki at a velocity
reversal, the integrator control force and static friction
cancel each other such that the remaining dynamics consist
of merely a PD-controlled inertia. Fig. 6 illustrates that
the net force acting on the inertia is a smooth function
of time. If the system overshoots the set-point with a
small amplitude while still x3 < Fs/Ki, the system may
arrive in the stick phase again since the integrator control
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force (combined with a low proportional control force due
to a small position error) may not fully compensate for
the static friction. Then, the integrator force changes sign
at zero velocity, but the total control force may not be
sufficient for the system to escape the stick set and thus
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with parameter values m = 1 kg, g = 9.81 m/s2, Kp = 18,
Kd = 1, and either Ki = 10, Ki = 20 or Ki = 30. The true
friction characteristic, given by (2), satisfies Fs = µmg,
with µ = 0.1 the friction coefficient. The true Stribeck
curve is assumed to satisfy

f(x2) = ((µmg − F )ηx2) (1 + η|x2|)−1
, (19)

with F = 0.5 N the true dynamic friction, and η =
20 the Stribeck shape parameter. This results in the
particular friction characteristic visualized in Fig. 2, with
a pronounced Stribeck effect. The bound on the Stribeck
curve satisfies (5), with δ = 25 and F̃ = 0.55 N, which
results in the particular bound as presented in Fig. 2.

A numerical time-stepping routine (see Acary and Brogliato
[2008]) is employed to numerically compute solutions of
the closed-loop system. The initial conditions are x1(0) =
−0.05, x2(0) = x3(0) = 0, satisfying Assumption 1. The
response of the closed-loop system is visualized in Fig. 3,
for both Ki = 10, Ki = 20, and Ki = 30, to illustrate the
influence of the integral gain Ki on the transient response.

For Ki = 10, the response approaches the set-point x1 =
0 asymptotically without overshoot, and with the only
period of sticking occurring immediately after t = 0. The
integrator state x3 approaches x̄3 = Fs/Ki asymptotically,
thereby effectively compensating for the unknown static
friction. The corresponding control forces v and w are
presented in Fig. 4. The total control signal v + w is
smooth, such that excitation of high-frequency system
dynamics is prevented due to the absence of discontinuous
control signals.

For Ki = 20, the response converges faster to the set-
point x1 = 0 compared to the response with Ki = 10,
but now with intermediate periods of stick (i.e., x2 = 0),
see the zoomed box in the middle subplot of Fig. 3. This
is consistent with the LaSalle argument discussed in the
previous section, as the response may arrive in the stick
phase with a non-zero position error, but it cannot remain
there due to the integrator action. The corresponding
control force, see Fig. 4, is continuous but non-smooth,
due to the non-smooth contribution of w caused by the
sticking instants.

For Ki = 30, the response overshoots the set-point x1 =
0, but still converges to the set-point (in compliance
with Theorem 1). This integrator tuning results in a
saturated integrator state (i.e, x3 = x̄3), see the zoomed
box in the lower subplot of Fig. 3, and a discontinuous
control signal v, as can be seen in Fig. 5. Since the
discontinuity in the integrator control force occurs only
at velocity reversals, there will be no excitation of high-
frequency system dynamics, as illustrated by the following
reasoning. It holds that x3 ≤ Fs/Ki, so the integrator
action compensates (partially) for the static friction. The
static friction changes sign upon velocity reversal, and so
does the integrator action. If x3 = Fs/Ki at a velocity
reversal, the integrator control force and static friction
cancel each other such that the remaining dynamics consist
of merely a PD-controlled inertia. Fig. 6 illustrates that
the net force acting on the inertia is a smooth function
of time. If the system overshoots the set-point with a
small amplitude while still x3 < Fs/Ki, the system may
arrive in the stick phase again since the integrator control
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force (combined with a low proportional control force due
to a small position error) may not fully compensate for
the static friction. Then, the integrator force changes sign
at zero velocity, but the total control force may not be
sufficient for the system to escape the stick set and thus
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Fig. 7. Simulated response of the closed-loop system for
variations on the velocity-dependent contribution of
the friction. The dashed line indicates the usage of
the bound (5) on this contribution.

the discontinuity in the control force does not result in
motion of the system.

By design of the controller (7), every velocity-dependent
friction law that satisfies (5), i.e., that lies inside the grey
area in Fig. 2 results in asymptotic set-point stability.
The simulated responses of the closed-loop system (1), (2),
(7) (with the same parameter settings and Ki = 20) for
different velocity-dependent friction curves illustrate this
fact, see Fig. 7.

6. CONCLUSIONS

In this paper, a control architecture for the set-point sta-
bilization of motion systems subject to set-valued Stribeck
friction is proposed. The controller consists of a switching
PID term, and a term that robustly compensates for the
velocity-weakening contribution of the friction. The con-

troller is robust for both unknown static friction, and an
uncertain Stribeck curve. The control strategy guarantees
asymptotic convergence to the set-point, and the particu-
lar design of the integrator action allows for considerable
faster convergence if the trajectory overshoots the set-
point, compared to the usage of conventional integrator
action in (7b). The effectiveness of the control architecture
is illustrated by means of a motion control example.
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