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a b s t r a c t

We present a reset control approach to improve the transient performance of a PID-controlled motion
system subject to Coulomb and viscous friction. A reset integrator is applied to circumvent the
depletion and refilling process of a linear integrator when the solution overshoots the setpoint, thereby
significantly reducing the settling time. Robustness for unknown static friction levels is obtained.
The closed-loop system is formulated through a hybrid systems framework, within which stability is
proven using a discontinuous Lyapunov-like function and a meagre-limsup invariance argument. The
working principle of the proposed reset controller is analyzed in an experimental benchmark study of
an industrial high-precision positioning machine.
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1. Introduction

In this paper, we present a reset integral control approach to
improve settling (transient) performance of a PID-controlled me-
chanical motion system subject to friction. Friction is a
performance-limiting factor in many high-precision positioning
systems, in the sense of, e.g., achievable setpoint accuracy and
settling times. Control of motion systems with friction has been
an active field of research in the past decades, and many dif-
ferent control solutions have been developed. Several control
approaches rely on developing as-accurate-as-possible friction
models in order to compensate for friction in the control loop, see,
e.g., Armstrong-Hélouvry, Dupont, and Canudas de Wit (1994),
Freidovich, Robertsson, Shiriaev, and Johansson (2010) and
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Makkar, Hu, Sawyer, and Dixon (2007) and the references therein.
However, model-based friction compensation techniques may
suffer from over- and undercompensation of friction due to un-
reliable friction measurements, uncertainties in the friction char-
acteristic, and model mismatches. Consequently, the system may
exhibit limit cycles or nonzero steady-state errors (thereby losing
stability of the setpoint), as thoroughly analyzed in Putra, Nijmei-
jer, and van de Wouw (2007). Non-model-based control tech-
niques do not aim at friction compensation using a friction model,
but change the response by applying specific control signals,
thereby obtaining the desired performance despite the apparent
friction. Examples of such techniques are impulsive control (see,
e.g., Orlov, Santiesteban, & Aguilar, 2009; van de Wouw & Leine,
2012), dithering-based techniques (see, e.g., Iannelli, Johansson,
Jönsson, & Vasca, 2006; Thomsen, 1999), or (second-order) sliding
mode control (see, e.g., Bartolini, Pisano, Punta, & Usai, 2003).
In general, these non-model-based control techniques have a
common disadvantage. Namely, the persistent injection of high-
frequency control signals may excite unmodeled high-frequency
system dynamics, which is highly undesirable in motion systems,
and, therefore, these techniques are not appealing for being used
in industrial applications.

Despite the existence of the above control techniques, lin-
ear controllers are still applied in the vast majority of indus-
trial motion systems. Control practitioners are often well-trained
in linear control design (loop-shaping), and the existence of
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intuitive tuning tools for linear controllers makes them undimin-
ishedly popular. In particular, the classical proportional–integral–
derivative (PID) controller is most commonly used for frictional
systems, since the integrator action results in compensation of
unknown static friction by integrating the position error. How-
ever, PID control is prone to performance limitations as well.
Firstly, the integrator action in the presence of the velocity-
weakening (i.e., Stribeck) effect may induce limit cycling (hunt-
ing), thereby losing asymptotic stability of the setpoint
(Armstrong-Hélouvry et al., 1994; Hensen, van de Molengraft, &
Steinbuch, 2003). A second limitation is the slow convergence
(and resulting long settling times) in the presence of static fric-
tion, see, e.g., Bisoffi, Da Lio, Teel, and Zaccarian (2018, Remark 3).
Integrator action is required to escape a stick phase by building
up the control force to overcome the (possibly unknown) static
friction. However, if the system overshoots the setpoint, the con-
trol signal must be pointed in the reverse direction to overcome
the static friction again. To this end, the integrator buffer needs to
deplete and refill. Despite achieving stability of the setpoint, this
process takes increasingly more time with a decreasing position
error. This results in long settling times, adversely affecting the
machine throughput.

In this paper, we address the second limitation in the context
of PID control. In particular, we propose a reset integral con-
trol scheme that significantly improves transient performance in
terms of settling time, and is applicable as an add-on to loop-
shaped PID controllers, as designed for industrial motion applica-
tions. By building upon a well-known control strategy embraced
by the industry, we aim at reducing the threshold for control
engineers to use a nonlinear control technique in an industrial
environment. Inspired by the Clegg integrator (Clegg, 1958) and
the First Order Reset Element (Horowitz & Rosenbaum, 1975),
reset controllers have been used to increase performance in (lin-
ear) motion control applications (see, e.g., Aangenent, Witvoet,
Heemels, van de Molengraft, & Steinbuch, 2010; Deenen, Heertjes,
Heemels, & Nijmeijer, 2017; El Rifai & El Rifai, 2009; van Loon,
Hunnekens, Heemels, van de Wouw, & Nijmeijer, 2016; Nešić,
Teel, & Zaccarian, 2011 and van Loon, Gruntjens, Heertjes, van de
Wouw, & Heemels, 2017; Nešić, Zaccarian, & Teel, 2008 for cor-
responding analysis tools), or disturbance attenuation (see Zhao
& Wang, 2016). To the best of the authors’ knowledge, however,
reset integrators have not yet been applied to improve settling
performance of nonlinear systems with friction.

The main contributions of this paper are as follows. The first
one is a novel reset control design for systems with friction
that both improves transient performance with respect to a clas-
sical PID controller, and achieves robust stability with respect
to uncertainties in the static friction. The reset mechanism is
robust to velocity measurement noise, and can be readily made
robust for asymmetric static friction, if needed. Moreover, the
proposed controller minimizes the risk of exciting unmodeled
high-frequency dynamics, despite the presence of a discontinuous
control signal, thereby addressing a major concern of control
engineers in industry. The second contribution is the stability
analysis of the resulting hybrid closed-loop system, which ex-
ploits a meagre-limsup invariance argument (Goebel, Sanfelice, &
Teel, 2012, §8.4). The third contribution is a demonstration of the
transient performance improvements using the proposed reset
control architecture by means of a case study on an industrial
high-precision positioning application (a manipulation stage of an
electron microscope). This paper builds upon our previous work
in Beerens et al. (2018), which contains the controller design and
a simulation example. In addition to Beerens et al. (2018), this
paper contains a more general controller reset law, proofs, and
experimental results.

The paper is organized as follows. In Section 2, a model of
the considered motion system with a classical PID controller is

presented together with the reset integrator control law. The
closed-loop dynamics are written in a hybrid systems formalism
in Section 3 and a stability analysis is given in Section 4. In
Section 5, a case study on a high-precision positioning application
is discussed, and conclusions are presented in Section 6.

Notation: sign(·) (with a lower-case s) denotes the classical sign
function, i.e., sign(y) := y/|y| for y ̸= 0 and sign(0) := 0.
Sign(·) (with an upper-case S) denotes the set-valued sign func-
tion, i.e., Sign(y) := {sign(y)} for y ̸= 0, and Sign(y) := [−1, 1]
for y = 0. For c > 0, the deadzone function is defined as:
dzc(x) := 0 if |x| ≤ c , dzc(x) := x − c if x > c , dzc(x) := x + c
if x < −c. A function f :D → R is lower semicontinuous if
lim infx→x0 f (x) ≥ f (x0) for each point x0 in its domain D. The
lower right Dini derivative D+h of a function h is defined as
D+h(t) := lim infϵ→0+

h(t+ϵ)−h(t)
ϵ

. The logical OR and AND are
denoted by ∨ and ∧, respectively.

2. Reset integral control design

In this section, we describe the motion system with friction,
and discuss the design of the reset control law.

Consider a single-degree-of-freedom mass m sliding on a hor-
izontal plane with position z1 and velocity z2. The mass is subject
to a control input ū and a friction force belonging to a friction set
Ψ (z2) for a velocity z2, where z2 ⇒ Ψ (z2) is a set-valued mapping.
The system dynamics are then given by the differential inclusion

ż1 = z2, ż2 ∈
1
m (Ψ (z2) + ū) . (1)

The set-valued friction characteristic Ψ consists of Coulomb fric-
tion with unknown static friction F̄s, and a viscous contribution
γ z2, where γ ≥ 0 is the viscous friction coefficient:

Ψ (z2) := −F̄s Sign(z2) − γ z2. (2)

Since the current paper is primarily focused on robust com-
pensation of unknown Coulomb friction and on transient
performance improvement, we have assumed that a velocity-
weakening (Stribeck) effect is absent in the friction characteristic
Ψ (in the presence of such an effect, a velocity-dependent com-
pensation control term may be employed as in Beerens, Nijmeijer,
Heemels, and van de Wouw (2017)). The goal is to control the
mass to the constant setpoint (z1, z2) = (r, 0).

Let us formulate the control problem of this paper.

Problem 1. Design a reset PID controller for input ū in (1)–(2)
that (1) globally asymptotically stabilizes the setpoint (z1, z2) =

(r, 0) robustly w.r.t. any unknown static friction F̄s, for any con-
stant r , and (2) improves the settling time (transient perfor-
mance), compared to a classical PID controller.

The presence of an integrator action in ū is motivated by
the fact that it is able to compensate for an unknown static
friction F̄s, which is typically the case in motion applications, so
that the controller can robustly deal with the Coulomb friction
effect. Before presenting our proposed reset PID controller, we
first introduce the classical PID controller generating ū as

ū = −k̄p(z1 − r) − k̄dz2 − k̄iz3, ż3 = z1 − r, (3)

where k̄p, k̄d, k̄i> 0 represent the proportional, derivative and in-
tegral gains, respectively. We apply then the following definitions
to obtain mass-normalized system dynamics that favor clarity in
the analysis of the upcoming sections:

kp :=
k̄p
m , kd :=

k̄d+γ

m , ki :=
k̄i
m , Fs :=

F̄s
m . (4)
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By using (4), the resulting mass-normalized, closed-loop dynam-
ics given by (1)–(3) satisfy

ż1 = z2,
ż2 ∈ −Fs Sign(z2) − kp(z1 − r) − kdz2 − kiz3,
ż3 = z1 − r,

(5)

with the state vector z = (z1, z2, z3) ∈ R3. We select the
(normalized) controller gains such that the next assumption is
satisfied.

Assumption 1. The control parameters kp, kd, ki satisfy ki > 0,
kp > 0, kpkd > ki.

When Fs = 0 (a special, linear case of our setting), this as-
sumption is equivalent, by the Routh–Hurwitz stability criterion,
to ensuring global exponential stability of the equilibrium z1 = r ,
z2 = z3 = 0 through a stabilizing PID controller. Assumption 1 is
hence not restrictive.

In Bisoffi et al. (2018), it is proven that the set of equilibria

A := {z = (r, 0, z3) | |z3| ≤ Fs/ki} (6)

of (5) is globally asymptotically stable under Assumption 1. How-
ever, the PID-controlled system (5) typically results in long set-
tling times due to the depletion and refilling of the integral buffer
that is required to overcome the static friction Fs upon overshoot,
resulting in a change of sign of the integrator state of the PID
controller (as illustrated in Beerens et al. (2018, §V and Fig. 3)).
This process is generally slow and takes increasingly more time
with a decreasing position error, resulting in long periods of stick
and thus a poor transient performance in the sense of settling
times. Note that the system is said to be in a stick or slip phase
when the state belongs respectively to the sets

Estick :={z ∈ R3
|z2 = 0, |kiz3 + kp(z1 − r)| ≤ Fs}, (7a)

Eslip :=R3
\Estick. (7b)

In this paper, we propose a novel reset PID control scheme to
solve Problem 1. In particular, the objective of the proposed reset
integral controller is to obtain a significantly faster settling time
(i.e., the time for the position error to reach and remain in a spec-
ified accuracy band) compared to the classical PID design in (3),
resulting in (5). To this end, we replace the integrator in the PID
controller (3) with a reset integrator. The key mechanism behind
the reset integrator is that a large part of the time-consuming
depletion and refilling process of the integrator buffer (needed
to overcome the static friction) is circumvented, whenever the
system overshoots the setpoint. The reset in (8c) below ensures
that the control force after a reset points in the direction of the
setpoint, as close as possible to the (unknown) static friction
value. This results in the following reset PID controller:

ū = −k̄p(z1 − r) − k̄dz2 − k̄iz3, (8a)

ż3 = z1 − r, (8b)

z+

3 = −αz3 − (1 + α) kpki (z1 − r), (8c)

where z+

3 denotes the updated value of z3 upon a reset, occurring
only when the conditions (8e) below are satisfied. The design
parameter α ∈ [0, 1] enables the reset to be scaled, and its role
is elaborated further in Section 5. Position z1 and velocity z2 do
not change at a reset:

z+

1 = z1, z+

2 = z2. (8d)

The integrator should be reset (as in (8e) below) whenever
(i) the system overshoots the setpoint, and (ii) it enters a stick
phase. Resetting the integrator when the system is in stick min-
imizes the risk of exciting high-frequency system dynamics be-
cause the discontinuity associated with the controller reset is

compensated by the set-valued friction. See Beerens et al. (2018,
§V) for an elaborate analysis of this fact. Intuitively speaking,
condition (i) is met when the position error and the proportional–
integral (PI) component of the controller have opposite sign.
The satisfaction of condition (ii) requires the detection of zero
velocity, which may be hard in practice due to measurement
noise. Although robust zero-velocity detection mechanisms exist,
we choose to evaluate the product of the PI control force and the
velocity signal in order to robustly detect hitting zero velocity
(see also Remark 1 below). Finally, we introduce a design parame-
ter ε > 0 whose purpose is to avoid Zeno behavior (Goebel et al.,
2012, pp. 28–29). This discussion motivates the controller reset
conditions:

ki(z1 − r)
(
kp(z1 − r) + kiz3

)
≤ 0

∧ − z2(kp(z1 − r) + kiz3) ≤ 0

∧|kpki(z1 − r)2 + k2i (z1 − r)z3| ≥ ε (8e)

In Section 3, we further elaborate on the reset map in (8c),
the reset conditions in (8e), and the role of ε by showing that
the reset conditions correspond indeed to (robust) detection of
overshoot and stick (see (7a)). Moreover, we show in Section 4
that the reset map in (8c) preserves global asymptotic stability
of the set of equilibria (6) for α ∈ [0, 1] and ε > 0 (note that
in Beerens et al. (2018) only the case α = 1 was considered).
Summarizing, the resulting closed-loop system with the proposed
reset PID controller is given by (5), (8c)–(8e).

3. Hybrid system formulation

In this section, we rewrite the closed-loop reset control sys-
tem (5), (8c)–(8e) in the hybrid systems formalism of Goebel
et al. (2012) to elaborate on the design of the proposed reset
law. Furthermore, the derived hybrid system is used later for the
stability analysis of Section 4.

Let us start with a useful state transformation, which allows
for a simpler description of the system, transforms any constant
setpoint r to the setpoint 0, and facilitates the construction of
a Lyapunov-like function for the stability analysis in Section 4.
Following Bisoffi et al. (2018), this state transformation is

x :=

[
σ

φ

v

]
:=

[
−ki(z1 − r)

−kp(z1 − r) − kiz3
z2

]
, (9)

where σ is a generalized position error, φ is the controller state
encompassing the proportional and integral control actions, and
v is the velocity of the mass. The state transformation in (9)
rewrites the stick set in (7a) as

Estick = {x ∈ R3
| v = 0, |φ| ≤ Fs}. (10)

The generalized controller state φ represents all the nonzero
components of the control action at zero velocity (that is, the
proportional and integral terms), and the size of φ compared to
the static friction Fs at v = 0 determines then whether the system
resides in a stick phase or not, see (10).

With the state transformation (9), we rewrite the closed-
loop dynamics (5) with the reset law (8c)–(8d) in the hybrid
formalism of Goebel et al. (2012) as in (11). The reset law (8c)–
(8d) expressed in the state x simply yields a scaled sign change
of φ when the reset criteria are met.

ẋ ∈ F (x) :=

[
−kiv

σ − kpv
φ − kdv − Fs Sign(v)

]
, x ∈ C, (11a)

x+
= g(x) :=

[
σ −αφ v

]⊤
, x ∈ D, (11b)
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Fig. 1. Possible state evolution with the proposed controller. The integrator
resets via a sign change of φ are clearly visible.

where F and g are the flow and jump map, respectively. Using (9),
the reset conditions in (8e) transform into

D :=
{
x ∈ R3

| φσ ≤ 0, φv ≤ 0, |φσ | ≥ ε
}
. (11c)

Finally, the flow set is given by

C := R3 \ D. (11d)

Let us elaborate on the rationale behind the design of the jump
set D using Fig. 1, which is an example of a response that could
be obtained with the proposed reset controller in the coordinates
x. Recall that we want the integrator to be reset (i.e., a jump is
desired in the hybrid formulation in (11)) when the system satis-
fies the following two conditions at the same time: (1) it enters a
stick phase, and (2) the position overshoots the setpoint. Namely,
a reset in such conditions greatly reduces the time needed for the
depletion and refilling of the integrator buffer, and consequently
the stick duration. This is the key mechanism to improve the
transient performance in terms of settling using reset control and
contributes to solving the second item of Problem 1. Let us now
discuss Fig. 1.

(1) Suppose the solution has initial condition σ > 0, φ > 0,
and v = 0, and starts in a stick phase (time interval 1 in Fig. 1).
Due to the dynamics of the integrator, φ > Fs is eventually
reached, which results in a slip phase (intervals 2 and 3 in Fig. 1).
The solution enters a stick phase again (interval 4 in Fig. 1) when
v = 0 is reached and the controller state φ satisfies 0 < φ < Fs.
At this point, the condition φv ≤ 0 is satisfied.

A reset should not take place if the solution enters a stick
phase without the occurrence of an overshoot, due to, e.g., differ-
ent initial conditions, tuning, or friction characteristics. In such
situations the solution still enters a stick phase and item (1)
is satisfied. For this reason, we require the additional condition
φσ ≤ 0 in the jump set D in (11c) as we explain now.

(2) Before an overshoot of the setpoint (interval 2 in Fig. 1),
we have positive σ and φ, and thus φσ > 0. After an overshoot
(interval 3 in Fig. 1), σ changes sign so that φσ ≤ 0. Along with
item (1), we conclude that φσ ≤ 0 in D enforces indeed that a
reset only takes place when the solution enters a stick phase after
an overshoot.

Finally, the condition |φσ | ≥ ε in (11c), for some design
parameter ε > 0, prevents a jump when σ or φ is zero, so that
Zeno behavior is avoided. We will transform this condition into a
more intuitive one in Section 5 (while leaving intact the stability
results presented in the next section), where we provide tuning
guidelines for ε as well.

Remark 1. To detect the stick phase, the criterion φv ≤ 0 is
chosen in the jump set D in (11c) rather than just v = 0, since the
latter is hard to check in practice due to velocity measurement
noise. Although measurement noise around zero velocity may

also render the product φv sign indefinite due to chattering in
the sign of v, the additional condition φσ ≤ 0 in D prevents the
system from experiencing undesired consecutive jumps. Indeed,
after the first reset, the jump map (11b) ensures that φσ > 0,
thus x+

̸∈ D. In this way the design of the reset condition
warrants robustness against measurement noise in v.

Remark 2. The jump set D is expressed in (11c) in terms of x.
The states φ and σ are not measurable in the case of an unknown
mass m, as one can see from (9) and (4). The same observation
clearly holds for the condition in (8e). However, even for an
unknown mass m, we can define from (9) and (4) the measurable
states

ς := mσ = −k̄i(z1 − r), (12a)

ϕ := mφ = −k̄p(z1 − r) − k̄iz3. (12b)

This leads to jump conditions that can be checked based on the
measurable states ς and ϕ, in which m does not appear. Note that
for some ϵ > 0, |ϕς | ≥ ϵ can replace |φσ | ≥ ε since ε is a design
parameter.

4. Stability analysis

The set of equilibria (6) can be rewritten by the state transfor-
mation in (9) as

A = {x ∈ R3
| σ = v = 0, |φ| ≤ Fs}. (13)

In this section, we show that (13) is globally asymptotically stable
for (11), solving item (1) of Problem 1, as formalized by the next
theorem.

Theorem 1. Under Assumption 1, for each α ∈ [0, 1] and ε > 0, A
in (13) is globally asymptotically stable for the hybrid dynamics (11).

The remainder of this section is devoted to the proof of The-
orem 1. In particular, we establish in Lemma 4 that A is globally
attractive, and in Lemma 6 that A is Lyapunov stable for (11).
The proof builds upon the results in Bisoffi et al. (2018), but is
significantly challenged by the addition of the reset controller
that gives rise to a hybrid (and no longer purely continuous-time)
closed-loop system.

Consider the discontinuous Lyapunov-like function V : R3
→

R proposed in Bisoffi et al. (2018) and defined as

V (x) :=
[
σ

v

]⊤[ kd
ki

−1
−1 kp

][
σ

v

]
+ min

F∈Fs Sign(v)
(φ − F )2. (14)

We start by providing some properties of solutions while
flowing, as in Lemma 1 below. To this end, we note that (11a)
(and function (14)) suggests that during flow there are three
relevant affine subsystems corresponding to the system being in
slip with nonnegative or nonpositive velocity, and being in stick
(cf. (7b) and (10)). With the definitions

A :=

[
0 0 −ki
1 0 −kp
0 1 −kd

]
, b :=

[
0
0
Fs

]
, P :=

[
kd
ki

0 −1

0 1 0
−1 0 kp

]
, (15)

these three subsystems are defined as

ξ̇ = f1(ξ ) :=Aξ − b, ξ (t0) = ξ1, (16a)

ξ̇ = f0(ξ ) :=

[
0 0 0
1 0 0
0 0 0

]
ξ, ξ (t0) = ξ0, (16b)

ξ̇ = f−1(ξ ) :=Aξ + b, ξ (t0) = ξ−1. (16c)

For ξ = (ξσ , ξφ, ξv) ∈ R3 and |ξ |
2
P := ξ TPξ , define also

V1(ξ ) :=
⏐⏐⏐⏐[ ξσ

ξφ−Fs
ξv

]⏐⏐⏐⏐2
P
, V0(ξ ) :=

⏐⏐⏐[ ξσ
0
0

]⏐⏐⏐2
P
, V−1(ξ ) :=

⏐⏐⏐⏐[ ξσ
ξφ+Fs

ξv

]⏐⏐⏐⏐2
P
. (16d)



R. Beerens, A. Bisoffi, L. Zaccarian et al. / Automatica 107 (2019) 483–492 487

Table 1
Selection of k in item (ii) of Lemma 1 for each possible initial condition.
Initial condition (σ̄ , φ̄, v̄) := x(t, j) k

(v̄ > 0) ∨ (v̄ = 0 ∧ φ̄ > Fs) ∨ (v̄ = 0 ∧ φ̄ = Fs ∧ σ̄ > 0) 1

(v̄ = 0 ∧ φ̄ = Fs ∧ σ̄ ≤ 0)

∨ (v̄ = 0 ∧ |φ̄|< Fs) ∨ (v̄ = 0 ∧ φ̄ = −Fs ∧ σ̄ ≥ 0)
0

(v̄ = 0 ∧ φ̄ = −Fs ∧ σ̄ < 0) ∨ (v̄ = 0 ∧ φ̄ < −Fs) ∨ (v̄ < 0) −1

With these definitions in place, we can state Lemma 1. Its item (i)
asserts that flowing solutions to (11) are unique (in spite of
the differential inclusion in (11a)), whereas its item (ii) relates
such a (unique) flowing solution with the solution of one of the
subsystems (16a)–(16c). The solution x to a hybrid dynamical
system and its hybrid time domain dom x are defined respectively
in Goebel et al. (2012, Def. 2.6) and Goebel et al. (2012, Def. 2.3).

Lemma 1. For each solution x to (11), each interval I j := {t: (t, j) ∈

dom x} =: [tj, tj+1] with nonempty interior, and for all t ∈ (tj, tj+1),

(i) if x̂ = (σ̂ , φ̂, v̂) is a solution to (11) on [t, t ′) × {j} with
t < t ′ ≤ tj+1 and x̂(t, j) = x(t, j), then x̂ coincides with x
on [t, t ′) × {j};

(ii) one can select k ∈ {−1, 0, 1} and T > 0 such that the
unique solution ξ = (ξσ , ξφ, ξv) to (16) with initial condition
ξk = x(t, j) and t0 = t, coincides on [t, t + T ] with x(·, j)
and, additionally, V in (14) and Vk in (16d) evaluated along
ξ satisfy for all τ ∈ [t, t + T ]:

V (ξ (τ )) = Vk(ξ (τ )) and (17a)
d
dτ Vk(ξ (τ )) ≤ −c|ξv(τ )|2, (17b)

with

c := 2(kpkd − ki) > 0. (18)

Proof. The proof of Lemma 1 is based on the proofs of Bisoffi
et al. (2018, Lemma 1 and Claim 1). Note that c > 0 in (18) by
Assumption 1.

Item (i). The proof of this item is carried out analogously
to Bisoffi et al. (2018, Proof of Lemma 1) for each one of the
nonempty intervals [t, t ′) × {j}.

Item (ii). For each possible initial condition (σ̄ , φ̄, v̄) := x(t, j),
k in item (ii) is selected based on Table 1. The proof is then
carried out analogously to Bisoffi et al. (2018, Appendix A) by
substituting into (11) the solution ξ to the kth affine subsystem
ξ̇ = fk(ξ ) among (16a)–(16c) and verifying that (11) holds for ξ .
Moreover, by evaluating V and Vk along the same ξ , and finally
by differentiating Vk(ξ (·)) w.r.t. time, we obtain (17). □

Exploiting Lemma 1, we are ready to present the properties of
V in (14) in Lemma 2 below. We will use fact that the distance
of a point x ∈ R3 to the attractor A in (13) is obtained from the
definition as

|x|2A :=
(
inf
y∈A

|x − y|
)2

= σ 2
+ v2

+ dzFs (φ)
2, (19)

by separating the cases φ < −Fs, |φ| ≤ Fs, φ > Fs.

Lemma 2. V in (14) is lower semicontinuous (lsc) and enjoys the
following properties:

(1) V (x) = 0 for all x ∈ A and there exists c1 > 0 such that
c1|x|2A ≤ V (x) for all x ∈ R3.

(2) Given c in (18), each solution x satisfies

V (x(t2, j)) − V (x(t1, j)) ≤ −c
∫ t2

t1

v(t, j)2dt (20)

for all t1, t2 in each (flow) interval I j := {t: (t, j) ∈ dom x}
with nonempty interior, and t1 ≤ t2.

(3) For all x ∈ D in (11c) it holds that

V (g(x)) − V (x) ≤ 0. (21)

Proof. Based on Assumption 1, the proof of V being lsc and of
item (1) is identical to Bisoffi et al. (2018, Proof of Lemma 2).

Item (2). To prove this item, we use (Hagood & Thomson, 2006,
Thm. 9) with the variant in Hagood and Thomson (2006, Sec. 5
(point a.)), as in the following Fact 1. The statement is specialized
for an integrable function l, so that the standard integral can re-
place the upper integral in Hagood and Thomson (2006, Thm. 9),
as noted after Hagood and Thomson (2006, Def. 8).

Fact 1 (Hagood & Thomson, 2006). Given t2 > t1 ≥ 0, suppose that
h is lower semicontinuous and that l is locally integrable in [t1, t2].
If D+h(τ ) ≤ l(τ ) for all τ ∈ [t1, t2], then h(t2) − h(t1) ≤

∫ t2
t1

l(τ )dτ .

By the preliminary Lemma 1, (20) in item (2) is a mere appli-
cation of Fact 1 for h(·) = V (x(·, j)) and l(·) = −cv(·, j)2 where
x = (σ , φ, v) is a solution to (11). So, we need to check that
the assumptions of Fact 1 are verified. We already established
above that V (·) is lsc. Solutions x to (11) are such that for each
j ∈ Z≥0, t ↦→ x(t, j) is locally absolutely continuous by Goebel
et al. (2012, Def. 2.4 and 2.6). Then, because the composition of a
lsc and a continuous function is lsc (Rockafellar & Wets, 2009,
Exercise 1.40), the Lyapunov-like function V in (14) evaluated
along the flow portion of a solution to (11) is lsc in t . Because
of the local absolute continuity of flowing portions of solutions,
−cv(·, j)2 is locally integrable.

Finally, it was proven in item (ii) of Lemma 1 that on I j, the
solution x to (11) coincides with the solution ξ to one of the
three affine systems in (16) (numbered k) on [t, t+T ]. Moreover,
that same item states that V (ξ (·)) coincides in [t, t + T ] with the
function Vk(ξ (·)) in (17), which is differentiable, hence V (x(·, j))
is at least differentiable from the right at t and the lower right
Dini derivative coincides with the right derivative. In particular,
we established in (17) that this right derivative is upper bounded
by −cv(·, j)2.

Item (3). For all x ∈ D in (11c), V (g(x)) − V (x) =

minF∈Fs Sign(v)(−αφ − F )2 − minF∈Fs Sign(v)(φ − F )2 where for each
v, the set Fs Sign(v) is compact. Then,

V (g(x)) − V (x) ={
(α2

− 1)φ2
+ 2(α + 1)φFs sign(v), if v ̸= 0,(

αdz Fs
α
(φ)

)2
−

(
dzFs (φ)

)2
, if v = 0,

(22)

by evaluating the different cases for v and φ. The inequality
in (21) follows from (22) since 0 ≤ α ≤ 1 and φv ≤ 0 in the
jump set D. □

The properties of V in Lemma 2 imply that maximal solutions
are complete (Goebel et al., 2012, §2.3), as per the next lemma.

Lemma 3. For each initial condition x̄ ∈ R3, each maximal solution
x to (11) with x(0, 0) = x̄ is complete.

Proof. The proof is based on Goebel et al. (2012, Prop. 6.10),
which can be applied since (11) satisfies the so-called hybrid basic
conditions (Goebel et al., 2012, Ass. 6.5). Condition (VC) of Goebel
et al. (2012, Prop. 6.10) holds for every ξ ∈ C\D, otherwise we
would contradict completeness in Bisoffi et al. (2018, Lem. 1).
Therefore, each solution x satisfies exactly one of Goebel et al.
(2012, Prop. 6.10, (a)–(c)). Note that (20) and (21) imply together
that

V (x(t, j)) ≤ V (x(0, 0)) (23)
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for each (t, j) ∈ dom x. If Goebel et al. (2012, Prop. 6.10, (b))
is verified (that is, limt→supt dom x |x(t, supj dom x)| = +∞), then
also V grows unbounded because of the lower bound of V in
Item (1) of Lemma 2. But this is a contradiction of (23), so we
can exclude (Goebel et al., 2012, Prop. 6.10, (b)) for each solution.
Also (Goebel et al., 2012, Prop. 6.10, (c)) can be excluded since
C ∪D is R3 in (11). Then only (Goebel et al., 2012, Prop. 6.10, (a))
remains, i.e., each solution x is complete. □

We can now prove global attractivity of A in (13) through a
meagre-limpsup invariance principle (Goebel et al., 2012,
Thm. 8.11) in the next lemma.

Lemma 4. The set of equilibria A in (13) is globally attractive for
dynamics (11).

Proof. Goebel et al. (2012, Thm. 8.11) is applicable because
(Goebel et al., 2012, Ass. 6.5) is satisfied by (11). Note that, since
each maximal solution x to (11) is complete by Lemma 3, the
conclusions of Goebel et al. (2012, Thm. 8.11) will hold for each
maximal solution x once we verify that each such x satisfies
the meagre-limsup conditions (a)–(b) below. More specifically,
introduce the continuous functions x ↦→ ℓc(x) := v2 and x ↦→

ℓd(x) := 1. Then, Goebel et al. (2012, Thm. 8.11) holds if:

(a) if supt dom x = ∞, then t ↦→ ℓc(x(t, j(t))) is weakly meagre
(as defined in Goebel et al. (2012, p. 178)), where j(t) :=

min(t,j)∈dom x j;
(b) for each maximal solution x∗ to (11), if (t, j−1), (t, j), (t, j+

1) ∈ dom x∗, then ℓd(x∗(t, j)) = 0.

Let us check condition (a). Lemma 2 (items 2–3) implies, for
each solution x and a generic (t, j) ∈ dom x, that V (x(t, j)) −

V (x(0, 0)) ≤ −c
∫ t
0 v(τ , j(τ ))2dτ , by splitting into flow intervals

and jumps. We then have
∫ t
0 ℓc(x(τ , j(τ )))dτ ≤

V (x(0,0))−V (x(t,j))
c ≤

V (x(0,0))
c by Lemma 2 (item 1). By letting t → +∞, this means

that t ↦→ ℓc(x(t, j(t))) is absolutely integrable on R≥0 and is hence
weakly meagre (see Goebel et al., 2012, p. 178).

Let us check condition (b). For all maximal solutions x∗ to (11),
there are no (t, j−1), (t, j), (t, j+1) ∈ dom x∗ since each x∗ cannot
exhibit two or more consecutive jumps (by the definitions of g
and D, if both (t, j − 1) and (t, j) ∈ dom x∗, then x∗(t, j − 1) ∈ D
and x∗(t, j) ∈ C\D). So, condition (b) is (vacuously) satisfied.

Since (a) and (b) above hold, then Goebel et al. (2012,
Thm. 8.11) concludes that for each solution x, Ω(x) ⊂ {χ ∈

rge x: v = 0}, where Ω(x) is the ω-limit set of solution x (Goebel
et al., 2012, Def. 6.17) and rge x denotes the closure of the range of
x. Due to the properties of Ω(x) in Goebel et al. (2012, Prop. 6.21),
its weak invariance implies that for each complete solution x,
Ω(x) does not contain points where σ ̸= 0 or |φ| > Fs, because
from these points all complete solutions eventually exhibit a
nonzero velocity component. As a consequence, Ω(x) ⊂ A for
each complete solution x, which implies by Goebel et al. (2012,
Prop. 6.21) that all complete solutions converge to A, i.e., global
attractivity of A. □

Finally, we now turn to proving stability of A in (13). As
in Bisoffi et al. (2018), we need the auxiliary function

V̂ (x) :=
1
2k1σ

2
+

1
2k2

(
dzFs (φ)

)2
+ k3|σ ||v| +

1
2k4v

2, (24)

in order to prove stability through bound (26), in spite of the
discontinuity of V in (14). Indeed, because of such discontinuity
at points in the attractor A, an upper bound of the type c2|x|2A
for V (x) does not hold in R3, unlike the lower bound in Lemma 2
(item 1), and stability of A cannot be concluded directly from V .
However, such lower and upper bounds, together with suitable
growth bounds along solutions, can be established for V and V̂ ,

respectively, in the following partition of the state space R := {x |

v(φ − sign(v)Fs) ≥ 0} and R̂ := R3
\R, as characterized in the next

lemma.

Lemma 5. For suitable positive scalars k1, k2, k3, k4 in (24), there
exist positive scalars c1, c2, ĉ1, ĉ2 such that

c1|x|2A ≤ V (x) ≤ c2|x|2A, ∀x ∈ R, (25a)

ĉ1|x|2A ≤ V̂ (x) ≤ ĉ2|x|2A, ∀x ∈ R3, (25b)

V̂ ◦(x) := max
v∈∂V̂ (x),f∈F (x)

⟨v, f⟩ ≤ 0, ∀x ∈ R̂, (25c)

V̂ (g(x)) − V̂ (x) ≤ 0 ∀x ∈ R̂, (25d)

where ∂V̂ (x) denotes the generalized gradient of V̂ at x as in Clarke
(1990, §1.2), F is as in (11a), and g is as in (11b).

Proof. Eqs. (25a)–(25b) are proved analogously to Bisoffi et al.
(2018, (19a)-(19b)). This is also true for (25c), since the flow map
F is the same as well. Finally, (25d) holds since

(
dzFs (−αφ)

)2
≤(

dzFs (φ)
)2 for α ∈ [0, 1]. □

By composing the relations of Lemmas 5 and 2 for V and V̂ , the
bound (26) of the next lemma can be obtained, which establishes
(uniform global) stability (see Goebel et al., 2012, Def. 3.6) of A
in (13).

Lemma 6. Given the scalars c1, c2, ĉ1, ĉ2 in (25), each solution x
to (11) satisfies

|x(t, j)|A ≤

√
c2ĉ2
c1ĉ1

|x(0, 0)|A ∀(t, j) ∈ dom x. (26)

Proof. The proof is the natural extension to the hybrid case of the
proof of Bisoffi et al. (2018, Proof of Item (2) of Prop. 1, Eq. (21)).
In particular, one considers the two mutually exclusive Case (i)
(i.e., x(t, j) /∈ R for all (t, j) ∈ dom x) and Case (ii) (i.e., there exists
(t̄, j̄) ∈ dom x such that x(t̄, j̄) ∈ R) and applies (25) and Lemma 2,
items 1–3. □

Remark 3. Since A is compact, and the hybrid system (11)
satisfies the hybrid basic conditions (Goebel et al., 2012, Ass. 6.5),
the stability and global attractivity results proven above imply
uniform global asymptotic stability for (11) in terms of a class-KL
estimate. They also imply global robust KL asymptotic stability of
A for (11) (Goebel et al., 2012, Thm. 7.21) and semiglobal practical
robust asymptotic stability of A (Goebel et al., 2012, Thm. 7.12
and Lemma 7.20).

5. Experimental case study

In this section, we demonstrate the working principle and the
effectiveness of the proposed reset controller on an industrial
high-precision positioning stage. The considered stage represents
a sample manipulation stage of an electron microscope (Thermo
Fisher Scientific). In particular, we show (1) the robust stability
properties of the controller in the presence of unknown static fric-
tion and measurement noise, (2) that the transient performance
is indeed improved w.r.t. the classical PID controller, as in item
2 of Problem 1, and (3) how the tuning of the reset controller
affects performance.

5.1. Experimental setup

The experimental setup is presented in Fig. 2. The setup con-
sists of a Maxon RE25 DC servo motor 1⃝ connected to a spindle
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Fig. 2. Experimental setup of a nano-positioning motion stage.

2⃝ via a coupling 3⃝ that is stiff in the rotational direction while
being flexible in the translational direction. The spindle drives
a nut 4⃝, transforming the rotary motion of the spindle to a
translational motion of the attached carriage 5⃝, with a ratio of
7.96 · 10−5 m/rad. The position of the carriage is measured by a
linear Renishaw encoder 6⃝ with a resolution of 1 nm (and peak
noise level of 4 nm). The desired position accuracy to be achieved
is 10 nm, as specified by the manufacturer.

For frequencies up to 200 Hz, the system dynamics can be well
described by (1) for which Theorem 1 applies when intercon-
nected with the reset PID controller. In this case, z1 represents
the position of the carriage. The mass m = 172.6 kg consists
of the transformed inertia of the motor and the spindle (with
an equivalent mass of 171 kg), and of the mass of the carriage
(1.6 kg).

The friction force for Ψ in (1) is mainly induced by the bear-
ings supporting the motor axis and the spindle (see 7⃝ and
8⃝ in Fig. 2), and by the contact between the spindle and the
nut. Since the system is rigid and behaves as a single mass for
frequencies up to 200 Hz, these friction forces can be summed
up to provide a single net friction characteristic as Ψ in (1). For
illustrative purposes only, the net friction characteristic is experi-
mentally identified and visualized in Fig. 3. It can be observed that
the setup shows dominantly static Coulomb friction with static
friction values of 32.7 N and 33.1 N for positive and negative
motions, respectively, indicating a small level of asymmetry in the
friction characteristic. On the other hand, it also shows a small
Stribeck effect. The Stribeck effect, however, is insignificant as
compared to the static friction, and does not require an additional
compensation term in ū. As we will show below, the closed-
loop with a (reset) PID controller results in asymptotic stability
of the position setpoint, instead of hunting limit cycling (which
may occur in the presence of a more pronounced Stribeck effect).
This indicates that the considered system controlled by either the
classical PID controller or the proposed reset controller has some
robustness to small Stribeck effects. We emphasize that we do
not use any of this information on the friction characteristic in
our controller.

5.2. Reset controller tuning

The purpose of the experimental case study is to demonstrate
the transient performance benefits that can be obtained with the
proposed reset controller, in terms of settling time, relative to the
classical PID controller.

The PID controller gains k̄p = 107 N/m, k̄d = 2 · 103 N · s/m,
and k̄i = 108 N/(m · s) are obtained by well-known linear loop-
shaping techniques often applied in industry. The proposed reset
integrator does not require additional tuning constraints other

Fig. 3. Measured friction characteristic. The circles are static friction val-
ues obtained from breakaway experiments, and the solid lines connect
velocity-dependent friction values for different initial positions.

than the ‘‘linear’’ stability conditions in Assumption 1 (indeed
necessary for the special case F̄s = 0) that are equivalent to
k̄i > 0, k̄p > 0, and k̄p(k̄d+γ )

m > k̄i. The latter holds since γ > 0 and
the PID controller gains above satisfy k̄p k̄d

m > k̄i.
Let us now explain the role of the tuning parameter α. Most

importantly, α ∈ [0, 1] directly affects the transient perfor-
mance (a larger α leads to a faster convergence). Additionally,
α accommodates the developments in Sections 2–4 for symmet-
ric friction to possible asymmetries in the experimental friction
characteristics. On the one hand, α closer to one yields a larger
reset and a correspondingly shorter stick duration. Choosing α as
large as possible is thus favorable for the transient performance
improvement, and we will show the implications of the value
for α on the transient performance in the next subsection. On
the other hand, a smaller α results in a relaxed reset, hence a
longer stick duration, which enhances robustness for frictional
asymmetry as explained in detail in the next remark.

Remark 4. A smaller α yields robustness to an asymmetric
friction characteristic. If the static friction value in the positive
direction of motion is significantly larger than the static friction
value in the negative direction of motion, the integrator has to
build up a larger control force in the positive direction. It may
then happen that after the reset ensuing the beginning of a stick
phase, the value for the proportional and integral action exceeds
the static friction value, resulting in an immediate escape from
the stick phase and possibly unstable behavior. In other words, a
controller reset (with α large) combined with asymmetric friction
may lead to overcompensation, compromising the stability of the
setpoint as analyzed in Putra et al. (2007).

The last tuning parameter ϵ comes from the criterion |ϕς | ≥ ϵ

which replaces |φσ | ≥ ε in D, as noted in Remark 2. The purpose
of |ϕς | ≥ ϵ is to prevent a discrete jump when the measurable
states ς or ϕ in (12) are zero, so that Zeno behavior is avoided. For
practical implementation, we redefine this criterion to the more
intuitive criteria |ς | ≥ η1, |ϕ| ≥ η2, with η1, η2 > 0. We choose
η1 = k̄i · 10−8 m = 1 N/s, so that resets are inhibited when
the carriage is within the desired position error accuracy band of
10−8 m (10 nm). Also, η2 = 1 N ·m · s is chosen so that resets are
inhibited when ϕ is small, in order to avoid Zeno behavior. Using
as in Remark 2 the measurable states ς and ϕ in (12), and the
above alternative criteria, the jump set used for the experiments
is then

D∗
:={(ς, ϕ, v) ∈ R3

|ϕς ≤ 0, ϕv ≤ 0, |ς | ≥ η1, |ϕ| ≥ η2}. (27)

Note that ς is obtained from the position error measurement z1−
r , and ϕ is obtained from both the position error measurement,
and a recording of the integrator state z3. We emphasize also that
our main result in Theorem 1 and its proof hold unchanged if D∗

replaces D in (11c).



490 R. Beerens, A. Bisoffi, L. Zaccarian et al. / Automatica 107 (2019) 483–492

Fig. 4. Experimental results for various values of α. Blue: position error z1 − r; gray: velocity; red: total control force scaled by 4k̄i . The accuracy band of 10 nm
is indicated by the black, dashed–dotted lines. The response resides within the desired accuracy from 56.7, 25.8, and 8.4 s onwards for α equal to 0.3, 0.8, and
1, respectively, as shown by the gray patches. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

5.3. Transient performance comparison

We now demonstrate the transient performance benefits of
the proposed reset controller. According to standard operation of
the nano-positioning stage in an electron microscope, a fourth-
order reference trajectory is applied to the stage so that it moves
by one millimeter in one second. After the trajectory has ended,
the stage has a nonzero positioning error due to the presence of
friction. This is the starting point of our window of interest during
the experiments, and from this point on, the goal is to control
the system towards a specified position error accuracy of 10 nm
using the proposed reset controller. In particular, we show the
relative improvement in terms of settling time (i.e., the required
time for the position error to reach and remain in the error band
of 10 nm), as compared to the underlying classical PID controller
without resets.

The responses for the position error z1 − r and the corre-
sponding scaled control force ū/(4k̄i) are presented in Fig. 4 for
the classical PID and the reset PID (with different values of α).
All experiments are performed with the same initial conditions.
Variations in the position errors and time instants of the initial
stick phases between the presented responses are due to the
fact that the friction characteristic is slightly different for each
experiment, due to, e.g., small temperature changes as a result
of continuous system operation. Since the setup operates on a
very small position error regime, even minor changes in the
friction may have a significant impact on the response. It can
be observed in Fig. 4 that the application of the reset controller
(see the three bottom plots for different values for α) results
in shorter stick periods and hence decreased settling times, as

compared to the classical PID controller (see the top plot). In
particular, in the presented responses, the desired accuracy is
achieved at respectively, 56.7, 25.3 and 8.4 s corresponding to
values for α of 0.3, 0.8 and 1. Unlike the reset one, the classical
PID controller (with the same controller gains), did not reach the
desired accuracy within the maximal measurement window of
120 s.

We emphasize that false resets are not triggered due to the
robust design of the jump set D (and its implementable ver-
sion D∗ in (27)) with respect to velocity measurement noise, as
pointed out in Remark 1. The inset in the second subplot in Fig. 4
shows that indeed a reset is triggered as soon as the velocity
hits zero (characterizing the start of a stick phase, as in (7a)).
After the reset has occurred, the velocity signal keeps crossing
zero during the stick phase, due to noise, but undesired multiple
resets are prevented by the robust design of the reset conditions,
in accordance with Remark 1.

5.4. Microscopic frictional effects

Due to the low position error levels in the operating conditions
of the setup, microscopic frictional effects that are present in the
friction characteristic are significant compared to the static fric-
tion effect in this particular application. The experimental results
above show that the proposed control strategy also exhibits some
robustness against these effects, although not formally analyzed
in the presented stability result in Section 4.
Frictional creep

A controller reset occurs some time after the beginning of
a macroscopic stick phase. This effect is caused by microscopic
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frictional creep (see, e.g., Armstrong-Hélouvry, 1992, Chap. 2) at
the start of (and during) a macroscopic stick phase (see the inset
in the first subplot of Fig. 4), thereby not allowing for a reset
because of the nonzero velocity. Hitting v = 0 (so that ϕv ≤ 0
in D∗ is satisfied) can be detected only when the microscopic
creep stops. This is illustrated by the inset in the second subplot of
Fig. 4, where we highlight the velocity signal during such a period
of creep. A nonzero velocity is indeed observed during creep, and
the controller is reset only as soon as the velocity signal hits zero
(indicated by the black dashed horizontal line). The reset delay
associated to creep allows then the integrator buffer to deplete,
which, in turn, causes a milder reset. This milder reset further
motivates us to choose α = 1 despite the (minor) asymmetry in
the friction characteristics (see Fig. 3).
Frictional stiffness effects

A second phenomenon caused by microscopic frictional effects
is the small stick-to-stick jumps in the position error response
upon resets, see the inset in the third subplot of Fig. 4. This
phenomenon can be explained by the presence of stiffness-like
characteristics in the friction, see e.g., Armstrong-Hélouvry et al.
(1994, Sec. 2.1). To illustrate this, note that the magnitude of
these stiffness-like effects can be estimated by dividing the differ-
ence in the control force associated with a controller reset, by the
resulting change in position. This results in values between 8 ·108

and 7 · 109 N/m. Although these estimated stiffness coefficients
are very large, the associated effect is significant due to the low
position errors in the operating conditions. Note that the system
still resides in the stick phase in macroscopic sense after the
controller reset. In this case, these effects are not unfavorable, as
they force the system towards the setpoint. On the other hand,
the position error after such a jump is smaller, so that it takes
more time for the integrator to compensate for the static friction.

6. Conclusions

We proposed a novel reset integrator control strategy for
motion systems with friction that achieves, firstly, robust global
asymptotic stability of the setpoint for unknown static friction
and, secondly, improves transient performance by reducing the
settling time. The reset conditions are designed so that a con-
troller reset is correctly triggered despite measurement noise,
and does not increase the risk of exciting high-frequency system
dynamics. Global asymptotic stability of the setpoint is proven
based on a generalized invariance principle for hybrid dynamical
systems. An experimental case study on a high-precision posi-
tioning application shows the improved settling time when using
the proposed reset controller, as compared to its classical PID
counterpart.
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