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Abstract— We present a reset control approach to achieve
setpoint regulation of a motion system with a proportional-
integral-derivative (PID)-based controller, subject to Coulomb
friction and a velocity-weakening (Stribeck) contribution. While
classical PID control results in persistent oscillations (hunting),
the proposed reset mechanism induces asymptotic stability of the
setpoint and significant overshoot reduction. Moreover, robust-
ness to an unknown static friction level and an unknown Stribeck
contribution is guaranteed. The closed-loop dynamics are for-
mulated in a hybrid systems framework, using a novel hybrid
description of the static friction element, and the asymptotic
stability of the setpoint is proven accordingly. The working
principle of the controller is demonstrated experimentally on
a motion stage of an electron microscope, showing superior
performance over classical PID control.

Index Terms— Friction, hybrid control, Lyapunov methods,
motion control, stability analysis.

I. INTRODUCTION

FRICTION is a performance-limiting factor in many
high-precision motion systems for which many con-

trol techniques exist in the literature. A branch of control
solutions relies on developing as-accurate-as-possible friction
models, used for online compensation in a control loop [7],
[24], [30], [31]. These model-based friction compensation
methods are typically prone to model mismatches due to,
e.g., unreliable friction measurements or time-varying or
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uncertain friction characteristics. Model-based techniques,
therefore, may suffer from overcompensation or undercom-
pensation of friction, thereby resulting in loss of stability of
the setpoint [38] and, thus, limiting the achievable positioning
accuracy. Adaptive control methods [5], [19] provide some
robustness to time-varying friction characteristics, but model
mismatches (and the associated performance limitations) still
remain. Nonmodel-based control schemes have also been
proposed, examples of which are impulsive control [35], [46],
dithering-based techniques [29], sliding-mode control [10],
or switched control [34]. Apart from properly smoothed
and parameterized sliding-mode control solutions [3], these
nonmodel-based controllers may employ high-frequency con-
trol signals, risking excitation of high-frequency dynamics,
in addition to raising tuning challenges. State feedback control
techniques have been explored in [22] but do not provide a
solution for the setpoint regulation control problem considered
in this article.

Despite the availability of a wide range of (nonlinear)
control techniques for frictional systems, linear controllers are
still used in the vast majority of industrial motion systems
due to the existence of intuitive design and tuning tools.
In industry, the classical proportional-integral-derivative (PID)
controller is commonly used for motion systems with friction.
In particular, integral action ensures that the only possible
equilibrium states correspond to zero position error (using
the internal model property); therefore, stability implies exact
setpoint regulation. Unfortunately, when the friction includes
a velocity-weakening (i.e., Stribeck) effect [44], stability is
generally lost, and steady-state oscillations emerge so that
the internal model property cannot be applied. Intuitively
speaking, as the integrator action builds up for compensating
the static part of the friction, the velocity-weakening effect
causes friction overcompensation as the velocity increases.
As a result, the system overshoots the setpoint and ends
up in persistent stick-slip oscillations (called hunting), as
characterized in the modeling and analysis results of [7]
and [27]. A much simpler scenario emerges in the Coulomb
case (i.e., no Stribeck effect), wherein we recently proved [15]
global asymptotic stability of the compact set of all the
equilibria, despite the presence of Coulomb friction, for any
possible linearly stabilizing PID gains tuning (preliminary
results had been previously proven in [6]). For the simplified
Coulomb case, we also recognized in [15, Remark 3] that
the time-consuming process of filling the integrator buffer
to overcome the static friction results in long settling times,
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which motivated our recent reset integrator scheme [11] aimed
at providing shorter settling times, thereby improving the
transient performance, for the Coulomb case.

In this article, we provide a significant advancement com-
pared to our former Coulomb-only (no Stribeck) scenarios
of [11] and [15]. In particular, we propose a reset integral
controller that achieves asymptotic stability of the setpoint,
despite the presence of unknown static friction and an unknown
velocity-weakening (Stribeck) effect in the friction character-
istic. The proposed robust reset PID scheme is model-free
(not model-based) and can be used as an augmentation of any
linearly stabilizing PID controller.

Reset and hybrid controllers have been an active field of
research in the past decades. Their development started with
the Clegg integrator [21] and the first-order reset element [28].
Since then, reset controllers have mainly been used to improve
the performance of linear motion systems [1], [32]. Specific
examples are the hybrid integrator-gain system [23], [47],
improving tracking performance and limiting overshoot. Over-
shoot reduction of linear systems using hybrid control is also
presented, e.g., in [13] and [50]. Analysis and design tools
for reset controllers are presented in [33] and [49] and in the
recent overviews [9], [37]. Reset controllers have already been
applied to improve performance of motion systems (notably,
in our recent work [11] commented above) but have not
been applied before for the stabilization of nonlinear frictional
motion systems.

The contributions of this article are as follows. The first
one is the design of a novel reset controller for systems
with Stribeck friction, aiming at asymptotically stabilizing a
constant setpoint. The second contribution is the development
of a hybrid formulation of the closed-loop system, where
the discontinuous friction element is captured by a hybrid
simulation model (in the sense of [48, Definition 2.5]), instead
of the commonly used set-valued force law [2, Sec. 1.3].
The simulation model builds upon our preliminary conference
contribution in [14], where we now include the Stribeck effect
and a radically different two-phase resetting law. The third
contribution is proof of asymptotic stability, and the fourth
contribution is an experimental demonstration of the effective-
ness of the proposed controller on an industrial high-precision
positioning system.

This article is organized as follows. In Section II, we present
our reset PID controller design. In Section III, we formulate
the reset closed loop as a hybrid system, state the main
stability result, and exploit intrinsic robustness properties to
obtain a suitable experimental implementation. In Section IV,
we experimentally validate the proposed reset controller on
a high-accuracy industrial positioning system. In Sections V
and VI, we prove our main theorem establishing a number
of useful intermediate results. The proofs of some technical
lemmas are omitted due to space constraints but can be
found [12], which is the publicly archived extended version
of this article.

Notations: Given x ∈ R
n , |x | is its Euclidean norm. B

is the closed unit ball, of appropriate dimensions, in the
Euclidean norm. sign(·) denotes the classical sign function,
i.e., sign(y) := y/|y| for y �= 0 and sign(0) := 0. Sign(·)

(with an upper case S) denotes the set-valued sign function,
i.e., Sign(y) := {sign(y)} for y �= 0, and Sign(y) := [−1, 1]
for y = 0. For c > 0, the deadzone function y �→ dzc(y) is
defined as dzc(y) := 0 if |y| ≤ c; dzc(y) := y−c sign(y)

if |y| > c. For column vectors x1 ∈ R
d1 ,…, xm ∈ R

dm ,
the notation (x1, . . . , xm) is equivalent to

[
x�

1 · · · x�
m

]�
. e3 :=

(0, 0, 1) is the third unit vector generating R
3. ∧, ∨, and 
⇒

denote the logical conjunction, disjunction, and implication.
For a hybrid solution ψ [25, Definition 2.6] with hybrid

time domain domψ [25, Definition 2.3], the function j (·) is
defined as j (t) := min(t,k)∈domψ k. Function j (·) depends on
the specific solution ψ that it addresses, but, with a slight
abuse of notation, we use a unified symbol j (·) because the
solution under consideration is always clear from the context.
A hybrid solution is maximal if it cannot be extended [25,
Definition 2.7] and is complete if its domain is unbounded (in
the t- or j -direction) [25, p. 30]. For a hybrid system H and
a set S, ψ ∈ SH(x) (respectively, ψ ∈ SH(S)) means that ψ
is a maximal solution to H with ψ(0, 0) = x (respectively,
ψ(0, 0) ∈ S), and SH is the set of all maximal solutions
to H.

II. SYSTEM DESCRIPTION AND

CONTROLLER DESIGN

A single-degree-of-freedom mass m sliding on a horizontal
plane with position z1 and velocity z2 is subject to a control
input ū and a friction force belonging to a set �(z2)

ż1 = z2, ż2 ∈ 1

m
(�(z2)+ ū). (1)

The friction characteristic is modeled by the next set-valued
(indicated by the double arrow) mapping of the velocity

z2 ⇒ �(z2) := −F̄s Sign(z2)− αz2 + f̄ (z2) (2)

where F̄s is the static friction, αz2 the viscous friction contri-
bution (with α ≥ 0 being the viscous friction coefficient),
and f̄ a nonlinear velocity-dependent friction contribution,
encompassing the Stribeck effect. Recall that “Sign” denotes
the set-valued sign function.

For a reference position r ∈ R, our goal is formulated next.
Problem 1: Design a reset PID controller for ū in (1)

and (2) that globally asymptotically stabilizes the setpoint
(z1, z2) = (r, 0) without using knowledge of the friction
parameters F̄s and α and of function f̄ .

The advantage of using integrator action in Problem 1 is
motivated by: 1) the fact that integral action is commonly used
in the industry and that simple gain tuning rules are known
to practitioners, thereby bridging the gap between control
systems theory and control systems technology and 2) the fact
that the integral action ensures that any equilibrium necessarily
corresponds to zero steady-state position error, despite the
unknown friction force. The need for reset mechanisms is
motivated by the fact that stability of the setpoint is not
achieved by classical PID feedback [15], [38]. Enhancing
the PID controller with resets instead results in asymptotic
stability of the setpoint, as shown in this article.
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Fig. 1. Example of a friction force satisfying Assumption 1. Total friction
( ), static contribution Fs ( ), and velocity-dependent contribution f
( ).

A. Classical PID Controller

Consider a classical PID controller for input ū in (1), that
is,

ū = −k̄ p(z1 − r)− k̄d z2 − k̄i z3, ż3 = z1 − r (3)

where z3 is the PID controller state, and k̄ p, k̄d , and k̄i rep-
resent the proportional, derivative, and integral gains, respec-
tively. As in [11] and [15], we use mass-normalized parameters
and shifted state variables that facilitate later the construction
of Lyapunov functions for the stability analysis

k p := k̄ p

m
, kd := k̄d + α

m
, ki := k̄i

m
, Fs := F̄s

m
, f := f̄

m
,

(4)

x̂ :=
⎡
⎣σ̂φ̂
v̂

⎤
⎦ :=

⎡
⎣ −ki(z1 − r)

−k p(z1 − r)− ki z3

z2

⎤
⎦. (5)

Using (4) and (5), model (1)–(3) corresponds to

˙̂x =
⎡
⎣ ˙̂σ

˙̂φ
˙̂v

⎤
⎦ ∈

⎡
⎣ −ki v̂

σ̂ − k pv̂

φ̂ − kd v̂ − Fs Sign(v̂)+ f (v̂)

⎤
⎦

=
⎡
⎣0 0 −ki

1 0 −k p

0 1 −kd

⎤
⎦
⎡
⎣σ̂φ̂
v̂

⎤
⎦− e3(Fs Sign(v̂)− f (v̂))

=: Ax̂ − e3(Fs Sign(v̂)− f (v̂)) =: F̂x(x̂). (6)

Note that σ̂ is a generalized position error, and φ̂ is the
controller state encompassing the proportional and integral
control actions.

Let us now adopt the following assumptions on the
velocity-dependent friction characteristic f and the controller
gains.

Assumption 1: Function f : R → R satisfies the following.
1) | f (v̂)| ≤ Fs for all v̂ .
2) v̂ f (v̂) ≥ 0 for all v̂ .
3) f is globally Lipschitz with Lipschitz constant L > 0.
4) For some εv > 0, f (v̂) = L2v̂ for all |v̂ | ≤ εv .
A possible f satisfying Assumption 1 is depicted in Fig. 1.

Items 1–3 are clearly not restrictive for typical friction laws.
Since εv can be selected arbitrarily small, item 4 is hardly
restrictive. Finally, note that any continuous function satisfying
Assumption 1 can be considered for f , extending beyond
classical Stribeck contributions.

In the new coordinates x̂ , a solution is said to be in a stick
or slip phase when it belongs, respectively, to the sets

Estick := {
x̂ ∈ R

3 : v̂ = 0, |φ̂| ≤ Fs
}
, Eslip := R

3\Estick. (7)

TABLE I

INITIAL CONDITIONS CONSIDERED IN LEMMA 1

Indeed, from Assumption 1, when v̂ = 0, until |φ̂| < Fs ,
the only possible evolution in (6) is with ˙̂v = 0 (a stick phase).

Assumption 2: The control gains k p, kd , and ki satisfy
k p > 0, ki > 0, and k pkd > ki .

Assumption 2 merely requires (by the Routh–Hurwitz cri-
terion) that matrix A is Hurwitz, i.e., it requires asymptotic
stability in the frictionless case Fs = 0, f ≡ 0. Note that
if k p < 0, or ki < 0, or k pkd < ki , then A has at least
one eigenvalue with positive real part, and the closed loop (6)
cannot be globally asymptotically stable (GAS) due to the
global boundedness of the term multiplying e3 [43].

The next lemma provides insight in the evolution of solu-
tions to (6) and will be useful in the subsequent derivations.

Lemma 1: Consider model (6) under Assumptions 1 and 2
and the initial conditions in Table I. The following holds.

1) For each initial condition x̂0 ∈ R
3, there exists a unique

solution x̂ to (6) with x̂(0) = x̂0, which is also complete.
2) For each initial condition x̂0 = (σ̂0, φ̂0, v̂0) satisfy-

ing (8), there exists T > 0 such that the unique solution
x̂ to (6) with x̂(0) = x̂0 coincides over [0, T ] with the
unique solution x̃ to

˙̃x = Ax̃ − e3(Fs − f (ṽ)), x̃(0) = x̂0, (11)

which satisfies ṽ(t) > 0 for all t ∈ (0, T ].
3) For each initial condition x̂0 = (σ̂0, φ̂0, v̂0) satisfy-

ing (9), there exists T > 0 such that the unique solution
x̂ to (6) with x̂(0) = x̂0 coincides over [0, T ] with the
unique solution x̃ to

˙̃x :=
[ ˙̃σ˙̃φ

˙̃v

]
=
[

0
σ̃
0

]
, x̃(0) = x̂0, (12)

which satisfies ṽ(t) = 0 for all t ∈ [0, T ].
4) For each x̂0 = (σ̂0, φ̂0, v̂0) satisfying (10), there exists

T > 0 such that the unique solution x̂ to (6) with x̂(0) =
x̂0 coincides over [0, T ] with the unique solution x̃ to

˙̃x = Ax̃ − e3(−Fs − f (ṽ)), x̃(0) = x̂0, (13)

which satisfies ṽ(t) < 0 for all t ∈ (0, T ].
The proof of the lemma, which extends [15, Lemma 1 and

Claim 1] for a nonzero f , is omitted due to space constraints
but can be found in [12]. We emphasize that the lemma can
also be proven using the theory of monotone set-valued opera-
tors (see the recent extensive survey [17]). As a matter of fact,
the closed loop (6) fits exactly within the class of differential
inclusions with maximal monotone set-valued nonlinearities.
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Indeed, the set-valued part is e3sign
(
e�

3 x̂
) = ∂g(x̂), which is

the gradient of a proper, convex and lower semicontinuous
function g so that ∂g is a maximal monotone operator.
Hence, well-posedness, continuity with respect to initial condi-
tions, existence of periodic solutions, time-discretization, and
stability could be addressed using the tools well surveyed
in [17]. Alternative possible frameworks are represented by the
impulsive differential inclusions in [8]. Despite these possible
alternative representations, we adopt here the hybrid systems
framework of [25], which provides powerful Lyapunov-based
tools to prove our results.

B. Reset Controller Design

In order to solve Problem 1, we replace the integrator in (3)
and (6) with a reset integrator. The integrator performs two
types of resets whose design is best explained in the original
coordinates z (instead of x̂). The key mechanism of these
resets is to enforce that the integrator control force (given by
k̄i z3) always points in the direction of the setpoint, namely

z3(z1 − r) ≥ 0, (14)

which imposes an initialization constraint on the integrator
state z3 and is then satisfied along all hybrid solutions of the
resulting closed loop. Due to the phase lag associated with
a linear integrator, property (14) cannot be achieved with a
classical PID controller [41, Secs. 1.3 and 2.3.2].

To obtain well-defined reset conditions ensuring (14),
we augment the PID controller dynamics with an extra
Boolean state b̂ ∈ {−1, 1}, characterizing whether the mass
moves toward the setpoint (b̂ = 1) or away from the setpoint
(b̂ = −1, typically occurring after an overshoot of the position
error). More precisely, b̂ always satisfies

b̂z2(z1 − r) ≤ 0 (15)

along the hybrid solutions. To ensure (15) and also (14), our
two types of resets are triggered by a zero crossing of each
one of the two factors in (15). The first reset is triggered by
the zero-crossing of the position error z1 −r (marking the start
of an overshoot of the position error) and is given by(

z1 − r = 0 ∧ b̂ = 1
) 
⇒ (

z+
3 = −z3, b̂+ = −b̂

)
. (16a)

Besides the fact that the reset in (16a) is required to obtain
stability of the setpoint, it also induces significant overshoot
reduction, as illustrated in Section II-C.

The second reset yields a change of the integrator state z3

to zero when the velocity z2 hits zero after an overshoot, that
is, (

z2 = 0 ∧ b̂ = −1
) 
⇒ (

z+
3 = 0, b̂+ = −b̂

)
. (16b)

The reset in (16b) is required to obtain asymptotic stability
of the setpoint. Indeed, if it were absent, this would not allow
the integrator state z3 to decrease in absolute value since (14)
forces z3 and z1 − r in (3) to always have the same sign [and
ż3 = z1 − r from (3)]. A (sufficiently) large initial condition
for z3 would then hinder global asymptotic stability of the
setpoint. In summary, the resulting closed-loop system with
the proposed reset PID controller is given by (1)–(3), with the
resetting laws (16).

Fig. 2. Simulated response of the position z1 (top), the control force ū
(middle), and the absolute value of state φ̂ in (5) in the logarithmic scale
(bottom) for the classical ( ) and reset ( ) PID control schemes.

C. Illustrative Example

We will illustrate the working principle of the proposed
reset controller by means of a simulation example, using a
numerical time-stepping scheme [2, Ch. 10].

First consider system (1)–(3), where only a classical PID
controller (3) is employed. The mass m is unitary, the static
friction is F̄s = 0.981 N, the viscous friction coefficient α is
zero, and the velocity-dependent friction contribution is

f̄ (z2) =
{

L2z2, |z2| ≤ εv,(
F̄s − F̄c

)
κz2(1 + κ |z2|)−1, |z2| > εv,

with F̄c = F̄s/3 being the Coulomb friction level, κ = 20 s/m
the Stribeck shape parameter, L2 = 12.8 Ns/m, and
εv = 10−3 m/s, satisfying Assumption 1. We take k̄ p =
18 N/m, k̄d = 2 Ns/m, and k̄i = 30 N/(ms), satisfying
Assumption 2. The constant setpoint is r = 0, and the
initial conditions are z1(0) = −0.05 m, z2(0) = 0 m/s, and
z3(0) = 0 ms. The position response is presented in the top
plot of Fig. 2 (- -), where persistent oscillations (hunting) are
evident.

Now, consider the reset closed loop (1)–(3) and (16). The
reset controller achieves, first, asymptotic stability of the set-
point (z1, z2) = (r, 0) (as proven later) and, second, overshoot
reduction compared to the classical PID response [see the top
plot of Fig. 2 ( )]. The insets show the controller resets
according to (16a) (i.e., at a zero-crossing of the position error)
and according to (16b) (i.e., when the velocity hits zero after
the previous reset has occurred). The arising (discontinuous)
control force is presented in the middle plot of Fig. 2.

The bottom plot of Fig. 2 is an anticipation for the specific
property, established in Section III, that the state φ̂ in (5) never
becomes zero when the reset mechanism is active, whereas it

Authorized licensed use limited to: ASML Netherlands B.V.. Downloaded on March 31,2022 at 07:01:32 UTC from IEEE Xplore.  Restrictions apply. 



298 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 30, NO. 1, JANUARY 2022

keeps crossing zero for the classical PID (the logarithm of
|φ̂| goes to −∞). Notice that φ̂ is reset according to (16b) at
increasingly smaller values (φ̂+ = −k p(z1 − r)) as the state
approaches the settling condition z1 − r = 0 and z2 = 0,
which is to be expected due to homogeneity of the reset law.
Nevertheless, φ̂ never reaches zero (as rigorously established
in Proposition 2).

III. MAIN RESULT

A. Hybrid Model Formulation and Stability Theorem

To state our main result, we write the reset closed loop
(1)–(3) and (16) using the hybrid formalism of [25]. The
resulting hybrid system, denoted by Ĥ, has an augmented
state vector ξ̂ ranging in a constrained set comprising a
correct initialization of the logic variable b̂ and the continuous
controller state φ̂

ξ̂ := (
x̂, b̂

) := (
σ̂ , φ̂, v̂, b̂

) ∈ �̂
�̂ :=

{(
x̂, b̂

) ∈ R
3×{−1, 1} : b̂v̂ σ̂ ≥0, σ̂ φ̂≥ k p

ki
σ̂ 2, b̂v̂ φ̂≥0

}
.

(17a)

In �̂, the first constraint [inherited from (15)] imposes that b̂v̂
and σ̂ never have opposite signs, while the second constraint
[inherited from (14)] imposes that σ̂ and φ̂ never have opposite
signs. With these two constraints in place, one should impose
that also b̂v̂ and φ̂ never have opposite signs, as ensured by
the third constraint characterizing �̂.1

More specifically, using (4) and (5) to represent (1)–(3),
the corresponding closed-loop model (6) augmented with the
resets (16) follows the hybrid dynamics:

Ĥ :

⎧⎪⎨
⎪⎩

˙̂ξ ∈ F̂(
ξ̂
)
, ξ̂ ∈ Ĉ := �̂ (17b)

ξ̂+ =
{

ĝσ
(
ξ̂
)
, if ξ̂ ∈ D̂σ

ĝv
(
ξ̂
)
, if ξ̂ ∈ D̂v ,

ξ̂ ∈ D̂ := D̂σ ∪ D̂v . (17c)

Herein, the flow map is given by

F̂(
ξ̂
) :=

⎡
⎢⎢⎣

−ki v̂
σ̂ − k p v̂

φ̂ − kd v̂ − Fs Sign(v̂)+ f (v̂)
0

⎤
⎥⎥⎦ =

[F̂x(x̂)
0

]
(17d)

and the jump maps and jump sets are given by

ĝσ
(
ξ̂
) :=

[
σ̂

−φ̂
v̂

−b̂

]
, ĝv

(
ξ̂
) :=

[ σ̂
kp
ki
σ̂

v̂
−b̂

]
, (17e)

D̂σ := {
ξ̂ ∈ �̂ : σ̂ = 0, b̂ = 1

}
, (17f)

D̂v := {
ξ̂ ∈ �̂ : v̂ = 0, b̂ = −1

}
(17g)

where D̂σ and D̂v are disjoint because they correspond to
the two different values of b̂. ĝσ and D̂σ correspond to the
resetting mechanism in (16a) and ĝv and D̂v to that in (16b).

Based on formulation (17) of the hybrid closed loop (1)–(3)
and (16), we focus for stability of the setpoint on the compact
set defined by all possible equilibria of the flow map (17d)

Â := {
ξ̂ ∈ �̂ : σ̂ = 0, |φ̂| ≤ Fs, v̂ = 0

}
. (18)

1Note that the first two constraints in �̂ do not imply b̂v̂ φ̂ ≥ 0 because,
with σ̂ = 0, the first two constraints are satisfied for any (even opposite and
nonzero) selections of b̂v̂ and φ̂.

Our main result, stated next, establishes global asymptotic
stability of the set of all possible equilibria. This is clearly the
smallest possible set that can enjoy global stability properties.
The proof of this result is postponed to Sections V and VI to
avoid breaking the flow of the exposition.

Theorem 1: Under Assumptions 1 and 2, the set Â in (18)
is GAS for Ĥ in (17).

B. Robustness and Well Posedness Properties

We discuss here robustness properties of the GAS result
of Theorem 1. To this end, due to the regularity prop-
erty established below, the robustness results in [25, Ch. 7]
apply, and one can state robust uniform global stability
and uniform global attractivity of Â. Among other things,
the semiglobal practical robustness of stability established in
[25, Lemma 7.20] reveals that one should expect a graceful
performance degradation in the presence of uncertainties,
disturbances, and unmodeled phenomena. One nontrivial con-
sequence of robustness is an input-to-state stability result
with respect to an input-matched disturbance acting on the
dynamics. Proving rigorously this result would go beyond
the page limits of this publication but can be done by adapting
the local/global bounds constructed in the proof of [15, Propo-
sition 2] and exploiting the uniform boundedness properties
established later in Section V. Another important result that
we prove below is that the solutions of the closed-loop
dynamics (17) are complete (i.e., they evolve forever), namely,
they are well behaved.

Proposition 1: The hybrid system (17) satisfies the hybrid
basic conditions of [25, Assumption 6.5]. Moreover, under
Assumptions 1 and 2, all maximal solutions are complete.

Proof: Verifying the hybrid basic conditions of
[25, Assumption 6.5] is straightforward from closedness of
sets Ĉ, D̂σ , and D̂v and the regularity properties of F̂ , ĝσ , and
ĝv . To prove completeness of maximal solutions, we apply
[25, Proposition 6.10]. To this end, we first prove the exis-
tence of nontrivial solutions [25, Definition 2.5] for each
ξ̂0 = (σ̂0, φ̂0, v̂0, b̂0) ∈ Ĉ∪D̂ = Ĉ = �̂. This is straightforward
if ξ̂0 is in the interior of Ĉ. To address the remaining points in
∂ Ĉ (i.e., the boundary of Ĉ), we follow a case-by-case proof
in the extended version [12]. Here, we provide a shorter proof
based on the expression [16, eq. (4.6)] of the tangent cone.
Denote the boundaries in ∂ Ĉ by

h1
(
ξ̂
) := b̂σ̂ v̂ = 0, h2

(
ξ̂
) := σ̂ φ̂ − k p

ki
σ̂ 2 = 0,

h3
(
ξ̂
) := b̂φ̂v̂ = 0,

and from [16, eq. (4.6)], we only need to show that for each
i = 1, 2, 3, ξ̂ ∈ ∂ Ĉ \ D̂ and hi (ξ̂ ) = 0 implies ḣi(ξ̂ ) ≥ 0 along
one flowing solution. We split the analysis in three cases.

1) Case 1: If h1(ξ̂ ) = 0 (namely, σ̂ = 0 or v̂ = 0),
we obtain along the flow dynamics (17d)

ḣ1
(
ξ̂
) = −b̂ki v̂

2 + b̂σ̂ ˙̂v ∈ −b̂ki v̂
2 + b̂σ̂

(
φ̂ + [−Fs, Fs ]

)
where the set membership uses h1(ξ̂ ) = 0. First,
consider v̂ = 0, and notice that b̂ = −1 implies
ξ̂ ∈ D̂v (a nontrivial solution jumps). When b̂ = 1,
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then either ˙̂v = 0 (stick phase), which implies
ḣ1(ξ̂ ) = 0, or sign( ˙̂v) = sign(φ̂) because φ̂ is
large enough to overcome the Coulomb friction (slip
phase), which implies that sign(ḣ1(ξ̂ )) = sign(σ̂ ˙̂v) =
sign(σ̂ φ̂) ≥ 0, due to σ̂ φ̂ ≥ (k p/ki)σ̂

2 in (17a). Second,
consider σ̂ = 0, and notice that b̂ = 1 implies ξ̂ ∈ D̂σ

(a nontrivial solution jumps). When b̂ = −1, then
ḣ1(ξ̂ ) = ki v̂

2 ≥ 0.
2) Case 2: If h2(ξ̂ ) = 0 (namely, σ̂ = 0 or φ̂ = (k p/ki)σ̂ ),

we obtain along the flow dynamics (17d)

ḣ2
(
ξ̂
) = σ̂ 2 + ki v̂

(
k p

ki
σ̂ − φ̂

)
.

Consider first the case φ̂ = (k p/ki)σ̂ , which gives
ḣ2(ξ̂ ) = σ̂ 2 ≥ 0. Consider next the case σ̂ = 0 and
notice that b̂ = 1 implies ξ̂ ∈ D̂σ (a nontrivial solution
jumps). When b̂ = −1, then ḣ2(ξ̂ ) = −ki v̂ φ̂ ≥ 0, due
to b̂v̂ φ̂ ≥ 0 in (17a).

3) Case 3: If h3(ξ̂ ) = 0 (namely, v̂ = 0 or φ̂ = 0),
we obtain along the flow dynamics (17d)

ḣ3
(
ξ̂
) = b̂

(
σ̂ − k pv̂

)
v̂ + b̂φ̂ ˙̂v.

The case v̂ = 0 is dealt with as in Case 1. Next, the case
φ̂ = 0 implies that σ̂ = 0 due to σ̂ φ̂ ≥ (k p/ki )σ̂

2

in (17a). Since σ̂ = 0, b̂ = 1 implies that ξ̂ ∈ D̂σ

(a nontrivial solution jumps). When b̂ = −1, ḣ3(ξ̂ ) =
k pv̂

2 ≥ 0.
The proof is completed by noting that case (b) of [25,

Proposition 6.10] cannot occur because the flow map is a
linear system with bounded inputs; hence, flowing solutions
are forward complete. Case (c) of [25, Proposition 6.10]
cannot occur because ĝσ (D̂σ ) ∪ ĝv(D̂v ) ⊂ Ĉ ∪ D̂ as it can
be verified through (17e)–(17g). Then, only case (a) of [25,
Proposition 6.10] remains, i.e., each solution ξ̂ is complete. �

C. Experimental Implementation

A relevant property enjoyed by the solutions of (17) is that
the transformed controller state φ̂ never reaches zero, unless
it is initialized at zero or reaches the attractor Â in finite time.
This fact, useful in Section IV, was illustrated in Section II-C
by the bottom plot of Fig. 2 and is formalized next.

Proposition 2: For Ĥ in (17), all solutions ξ̂ starting in

�̂0 := {
ξ̂ ∈ �̂ : φ̂ �= 0

}
(19)

and never reaching Â satisfy φ̂(t, j) �= 0 ∀ (t, j) ∈ dom ξ̂ .
Proof: The proof amounts to showing that no solution

evolving in �̂0 can reach a point, where φ̂ = 0, after flowing
or jumping, unless it reaches Â.

Consider solutions flowing in Ĉ := �̂. If a solution reaches
φ̂ = 0 while flowing in Ĉ, there necessarily exists a reverse
solution starting at ξ̂0 = (σ̂0, φ̂0, v̂0, b̂0) = (0, 0, v̂0, b̂0) ∈
�̂ (with σ̂0 = 0 because of constraint σ̂ φ̂ ≥ (k p/ki)σ̂

2 and
v̂0 �= 0; otherwise, the solution would be in Â, which is ruled
out by assumption) and flowing in backward time according
to −F̂(ξ̂ ) in (17d) while remaining in �̂. However, such a
reverse solution does not exist as we show next for v̂0 > 0 (the
case v̂0 < 0 is analogous). Since v̂0 > 0, v̂ remains positive
for a small enough backward-time interval, and the backward

dynamics ˙̂σ = ki v̂ > 0 implies that σ̂ is also positive in that
interval. Hence, constraint σ̂ φ̂ ≥ (k p/ki)σ̂

2 in (17a) becomes
h(ξ̂ ) := φ̂−(k p/ki)σ̂ , which is positive for all such sufficiently
small times. Let us note that h(ξ̂0) = 0, and in backward time,
ḣ(ξ̂ ) = −σ̂ + k pv̂ − (k p/ki)(ki v̂) = −σ̂ , which is strictly
negative for all such sufficiently small nonzero times. Then,
h(ξ̂ ) would become negative, and the candidate solution would
not remain in �̂; therefore, its existence is ruled out.

Bearing in mind that solutions cannot reach φ̂ = 0 while
flowing, unless they reach Â, we consider then jumps in (17e).
No jump from �̂0 ∩ D̂v can give φ̂+ = (k p/ki)σ̂ = 0;
otherwise, from the condition v̂ = 0 in D̂v , we would obtain
ξ̂+ ∈ Â, which is ruled out by assumption. For jumps from
�̂0 ∩ D̂σ , the conclusion is obvious since φ̂+ = −φ̂. �

Developing further on the result of Proposition 2, we clarify
below two possible types of convergence to Â. These prop-
erties will be necessary in the proof of Theorem 1 (which is
given in Sections V and VI).

Proposition 3: Each solution ξ̂ to (17) is such that the
following holds.

1) If it reaches Â in finite time, then it remains in Â
forever (namely, Â is strongly forward invariant [25,
Definition 6.25]).

2) If it never reaches Â (namely, ξ̂ (t, j) /∈ Â for
all (t, j) ∈ dom(ξ̂ )), then it evolves forever in the
t-direction (namely, supt dom ξ̂ = +∞).

Proof: Item 1) follows2 by inspecting all possible solu-
tions starting in Â, which may flow in Ĉ or jump from
D̂σ or D̂v . When flowing in Ĉ ∩ Â, Lemma 1(3) guarantees
that σ̂ , φ̂, and v̂ stay constant. Across jumps, we have
ĝσ (Â) ⊂ Â; ĝv(Â) ⊂ Â, which proves item 1). Proving
item 2) requires nontrivial derivations and is done at the end
of Section V-B. �

The established desirable properties of the state φ̂ and the
convergence to Â can be combined with the robustness results
discussed in Section III-B to propose an effective experimental
implementation of the proposed reset PID laws, as clarified in
the next two remarks.

Remark 1: An important consequence of Proposition 3(2)
is that no Zeno solutions emerge from model (17) as long as
solutions are not in Â. Ruling out Zeno solutions is key to well
representing the core continuous-time behavior of the plant.
However, Zeno solutions emerge inside Â, where frequent
and ineffective controller resets may occur in practical imple-
mentation (due to measurement noise) when the closed-loop
evolution gets close to Â. To avoid ineffective resets, it is
then reasonable and advisable to disable the controller resets
whenever the velocity v̂ and position error σ̂ are small enough.
In particular, resets should be disabled after resetting from
D̂v because map ĝv in (17e) ensures that φ̂ is reset to a
small value too whenever σ̂ is small. A small value of φ̂
yields a small value of the control force, compared to the
friction force, which generates robustness against other force
disturbances.

2Note that item 1) of Proposition 3 is also implied by the stability of Â
established in Theorem 1, but, since this item is instrumental to proving
Theorem 1 in Section VI-C, we pursue a different proof to avoid circularity.
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Remark 2: Due to the regularity properties of the hybrid
model, we expect solutions to remain close to nominal ones
in the presence of perturbations (as in noisy environments).
The presence of measurements noise may hinder the detection
of the zero crossings of σ̂ (for jumping from D̂σ ) or the zero
crossing of v̂ (for jumping from D̂v ). An elegant and effective
solution for the robust detection of zero crossing stems from
Proposition 2 combined with the observations in Remark 1,
ensuring that the resetting mechanism is only active outside
Â. In particular, Proposition 2 ensures that as long as we pick
initial conditions in �̂0 (that is, from (19), we do not initialize
φ̂ = −k p(z1 − r) − ki z3 at zero3), φ̂ never reaches zero.
Then, exploiting the inequalities characterizing �̂ in (17a),
we have that solutions starting in �̂0 remain unchanged if the
zero-measure sets D̂σ and D̂v are exchanged for the sets

D̄σ := {
ξ̂ : σ̂ φ̂ ≤ 0, b̂ = 1

}
(20)

D̄v := {
ξ̂ : v̂φ̂ ≥ 0, b̂ = −1

}
, (21)

which satisfy D̄σ ∩ �̂0 = D̂σ ∩ �̂0 and D̄v ∩ �̂0 = D̂v ∩ �̂0.
Since φ̂ is never zero during the transient from Proposi-
tion 2, conditions (20) and (21) are effective at robustly
detecting the zero crossings of σ̂ and v̂ , respectively. In fact,
a reset condition similar to (21) has already been success-
fully used in [11] to robustly detect a zero crossing of the
velocity.

IV. INDUSTRIAL SYSTEM VALIDATION

A. Experimental Setup

We demonstrate the proposed reset controller on an indus-
trial high-precision motion platform consisting of a sample
manipulation stage of an electron microscope [45], as shown
in Fig. 3. This same setup has been used in [11, Sec. 5]
in a lubricant-free configuration. The absence of lubricant
generates dominantly Coulomb and viscous friction, thereby
not causing instability of the setpoint (which is asymptotically
stable, as proven in [15]). However, in standard machine
operating conditions, the lubricant must be used to prevent
wear and induces a significant Stribeck effect. The corre-
sponding reset-free responses, as shown in Fig. 4, indicate
a severe hunting phenomenon (instability), in contrast to the
lubricant-free measurements reported in [11, top of Fig. 4]
(where the Stribeck effect is hardly present). In these operating
conditions, the platform is an ideal testbed for our reset control
solution.

The setup consists of a Maxon RE25 dc servo motor ①

connected to a spindle ② via a coupling ③ that is stiff in the
rotational direction while being flexible in the translational
direction. The spindle drives a nut ④, transforming the rotary
motion of the spindle to a translational motion of the attached
carriage ⑤, with a ratio of 7.96 · 10−5 m/rad. The position
of the carriage is measured by a linear Renishaw encoder ⑥

with a resolution of 1 nm (and a peak noise level of 4 nm).
The carriage is connected to the fixed world with a leaf

3When starting the controller with a nonzero position error z1 − r �= 0
(which is typically the case), the requirement φ̂ �= 0 is easily ensured by
initializing the integrator state z3 at zero.

Fig. 3. Experimental setup of a (nanometer) sample manipulation motion
stage in an electron microscope [45].

Fig. 4. Responses of position (top), control force (middle), and logarithm
of |φ̂| (bottom) for three experiments with a classical PID controller. The
three different colors correspond to three different experiments. The desired
accuracy band [( ) in the top plot] is clearly not achieved with the classical
PID controller. The bottom plot shows that φ̂ keeps crossing zero.

spring ⑦, eliminating backlash in the spindle-nut connection.
The position accuracy requested by the manufacturer is 10 nm.

For frequencies up to 200 Hz, the dynamics can be well
described by (1), for which Theorem 1 applies when using our
reset PID controller. In this case, z1 represents the position
of the carriage. The mass m = 172.6 kg represents the
transformed inertia of motor and spindle (with an equivalent
mass of 171 kg), plus the mass of the carriage (1.6 kg).
Friction is mainly induced by the bearings supporting the
motor axis and the spindle (see ⑧ in Fig. 3), by the contact
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between the spindle and the nut and, to a lesser extent, by the
contact between the carriage and the guidance. The contact
between the spindle and the nut is lubricated, which induces
the Stribeck effect. Since the system is rigid and behaves like
a single mass for frequencies up to 200 Hz, these forces can be
summed up to provide the net friction characteristic � in (1).

B. Experiments With Classical PID and Reset PID

Experiments with the classical PID controller (3) have been
performed, with gains k̄ p = 107 N/m, k̄d = 2 · 103 Ns/m,
and k̄i = 108 N/(ms). These satisfy Assumption 2 because
from (4), it is enough to check k̄ p > 0, k̄i > 0, and(
k̄ p(k̄d + α)

)
/m > k̄i , which hold because α > 0 and the

gains above satisfy k̄ pk̄d/m > k̄i . The position response
and the corresponding control force are visualized in the top
and middle plots of Fig. 4 for three different experiments.
Persistent oscillations, and thus the lack of stability of the
setpoint, are clearly visible and confirm the presence of a
significant Stribeck effect. The bottom plot of Fig. 4 shows
that the controller state φ̂ keeps crossing zero (its logarithm
becomes negatively unbounded); see also the dashed curve of
the lower plot of Fig. 2.

We now employ the proposed reset controller, with the same
controller gains as for the classical PID case. We use the reset
conditions in (20) and (21) to robustly detect zero crossings
of the position error and the velocity, which are equivalent to
the next conditions in the physical coordinates z

D̄σ = {(
z, b̂

) : k̄i(z1 − r)
(
k̄ p(z1 − r)+ k̄i z3

) ≤ 0, b̂ = 1
}

(22a)

D̄v = {(
z, b̂

) : z2
(
k̄ p(z1 − r)+ k̄i z3

) ≤ 0, b̂ = −1
}
. (22b)

These sets are independent of the mass m, thereby resulting
in a simplified implementation. To avoid ineffective resets
triggered by measurement noise according to Remark 1,
a stopping criterion is used, which disables resets when the
evolution is close to the setpoint. Specifically, resets are
disabled whenever the position error is within the desired
accuracy band of 10 nm (i.e., |z1 − r | ≤ 10 nm) after a
reset from D̄v because having a low integral control force
compared to the static friction yields robustness to other force
disturbances.

Consider Fig. 5, reporting in the top and middle plots
the position error and control force for three experiments
with the proposed reset controller. For comparison purposes,
we enable the controller resets when the PI control force φ̂
and the position error σ̂ have the same sign, see (17a), after
the first zero crossings of the position error. The activation
times are indicated by the vertical dashed lines, and before the
activation, a classical PID controller with the same tuning is
active. The top plot shows that, using the reset enhancements,
the system settles within the desired accuracy band of 10 nm
after only two resets: the first one from D̄σ and the second
one from D̄v . The corresponding control force, displayed in the
middle subplot, is discontinuous due to the controller resets,
as highlighted in the inset. Instead, the classical PID controller
does not result in the desired accuracy (see Fig. 4). Also, note
that the controller resets from D̄σ suppress overshoot.

Fig. 5. Responses of position (top), control force (middle), and logarithm
of |φ̂| (bottom) for three experiments with the reset PID controller. The three
different colors correspond to three different experiments. The bottom plot
shows that φ̂ never becomes zero when using resets.

For all three experiments, the desired accuracy is achieved
after the first reset from D̄v . According to Remark 1, the resets
are then deactivated (see the vertical dotted lines in the bottom
plot). Then, the reset PID is active in the time intervals
between the dashed and dotted vertical lines reported in the
bottom plot, and those intervals correspond to the darker
strokes in that same plot. We note, as indicated in Remark 2,
that the reset conditions in the jump sets D̄σ and D̄v correctly
trigger the controller reset despite the presence of measure-
ment noise. Indeed, as established in Proposition 2, φ̂ never
becomes zero, while the resets are active (see the simulation
results in the bottom plot of Fig. 2). Additional insight can be
obtained from Fig. 6, where the phase plot without and with
resets well illustrates the oscillating response never reaching Â
(left) and the reset-stabilized response converging to Â (right).

Let us now analyze the response at the nanometer scale.
Consider the position error response as a result of the con-
troller resets in more detail, using Fig. 7. In this figure, a time
interval where b̂ = −1 is indicated in gray; its boundaries
then indicate two reset instants. Conversely, the white areas
correspond to intervals where b̂ = 1. First, consider the top left
subplot, which shows a zoomed-in view of the position error
of the blue response of Fig. 5. As soon as the error crosses
zero at about 17.5 s, a controller reset from D̄σ is triggered,
which toggles the sign of z3. As a result of stiffness-like effects
in the friction characteristic (see [7, Sec. 2.1], [11, Sec. 5])
combined with the sudden (large) change of the control force,
a “jump” of the position error is observed, which prevents the
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Fig. 6. Phase plot (blue) of the hunting oscillations of Fig. 4 (left) and the
reset PID stabilization of Fig. 5 (right). The red segment is an estimate of
the (unknown) experimental attractor Â, based on an estimate for the static
friction level. The dashed line indicates the desired 10-nm accuracy band.

Fig. 7. Zoomed-in view of a position response (top left) and controller reset
conditions [top right and bottom left, ( )]. Velocity signal ( ).

system from actually overshooting the setpoint. Despite this
unmodeled effect, the hysteresis mechanism embedded in b̂
prevents an immediate reset from happening again, thus illus-
trating the robustness properties discussed in Section III-C.
Later, at about 17.6 s, a reset from D̄v occurs, which resets
z3 to zero. Once again, due to the stiffness effects, a “jump”
of the position error occurs (but lower in magnitude, due to
the smaller discontinuity in the control force compared to the
previous reset from D̄σ ). We then observe that the position
error crosses zero slowly as a result of frictional creep effects
(see [11, Sec. 5.4] and [39]; see [40] for a controller that
explicitly deals with such effects); see the inset in the top
subplot of Fig. 5. However, the position error remains well
within the desired accuracy band of 10 nm, so further resets
are disabled according to our stopping criterion.

Next, we analyze the reset conditions in (22a) and (22b)
depicted in the top right and bottom left plots of Fig. 7 as
a function of time for the blue response in Fig. 5. From
the top right plot, it is evident that, indeed, a reset from
D̄σ in (22a) occurs at about 17.5 s when b̂ = 1 and
k̄i(z1 − r)(k̄ p(z1 − r) + k̄i z3) ≤ 0, which is satisfied as soon
as the position error crosses zero (see also Fig. 5). Because
overshoot is prevented due to the frictional stiffness effects,
the reset condition k̄i(z1 − r)

(
k̄ p(z1 − r)+ k̄i z3

) ≤ 0 remains

true after the reset. However, b̂ = −1 prevents further resets,
which shows that the proposed reset controller exhibits further
robustness characteristics with respect to such small-scale

frictional effects. Consider, then, the bottom left plot, and
recall that a reset from D̄v in (22b) should occur whenever
b̂ = −1 (satisfied because of the occurrence of the previous
reset from D̄σ ) and when the velocity hits zero. Detecting
the latter is successfully done by evaluating the inequality
−z2

(
k̄ p(z1 − r)+ k̄i z3

) ≥ 0 (see also (21) and Remark 2)
even though the velocity signal experiences some lag due to
the online, noise-reducing low-pass filtering. Since the error
z1 − r is now within the desired accuracy band, the stopping
criterion prevents further resets.

V. SEMIGLOBAL PROPERTIES AND

SIMULATION MODEL

In this section, we establish a few important stepping stones
toward proving Theorem 1. We first show in Section V-A
that solutions to (17) are uniformly globally bounded, which
enables proving a semiglobal dwell-time property of solutions
in Section V-B. Finally, in Section V-C, we define a semiglobal
simulation hybrid automaton model in the (bi)simulation
sense developed in the computer science context and recently
becoming popular in the control community [26]. This model
allows proving Theorem 1 in Section VI.

A. Uniform Global Boundedness

Consider the discontinuous Lyapunov-like function

W
(
ξ̂
) =

[
σ̂
v̂

]�[ kd
ki

−1
−1 k p

][
σ̂
v̂

]
+ min

F∈Fs Sign(v̂)

(
b̂φ̂ − F

)2
(23)

which was used (with b̂ = 1) in [11, eq. (14)] and [15, eq. (13)]
to prove global attractivity with Coulomb friction only. With
b̂ = 1, W can be written and interpreted as a quadratic form in
(σ̂ , φ̂−F, v̂ ) (with a positive definite matrix by Assumption 2),
minimized over all possible values allowed by the set-valued
static friction (see [15, p. 2856]).

Due to its discontinuity at points in Â, the typical
(quadratic) upper and lower bounds on W do not hold (in
particular, the upper bound does not hold). Therefore, W
cannot be used to establish stability but can still be used to
prove boundedness of solutions to (17). In particular, for W
in (23), it holds that the matrix

[
(kd /ki ) −1

−1 kp

]
is positive definite

by Assumption 2, and4 for b̂ ∈ {−1, 1}, (φ̂2/2) − F2
s ≤

minF∈Fs Sign(v̂)(b̂φ̂ − F)2 ≤ 2φ̂2 + 2F2
s . By these inequalities,

we construct the bounds

W
(
ξ̂
) ≤ c̄W |x̂ |2 + 2F2

s , |x̂ |2 ≤ cW W
(
ξ̂
) + cW F2

s (24)

for some scalars c̄W ≥ 1 and cW ≥ 1. Bounds (24) show that
boundedness of W (ξ̂ ) is equivalent to boundedness of |x̂ |.

In the presence of Coulomb friction, function W was shown
to enjoy useful nonincrease properties in [11] and [15]. These
properties were key to proving global attractivity. However,
these nonincrease properties are destroyed here due to the
velocity-weakening (Stribeck) contribution f in (17d), which
was not considered in [11] and [15]. In particular, by defining

c3 := 2
(
k pkd − ki

)
> 0 (25)

4The derivation of the next inequalities can be found in [12].
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(c3 > 0 by Assumption 2), the next lemma provides some
useful characterization of the increase/decrease properties of
W . Its proof is mostly based on manipulations of the dynamics
in the specific sets under consideration and is omitted due to
space constraints but can be found in [12].

Lemma 2: Under Assumptions 1 and 2, W in (23) with c3

in (25) enjoys the following properties along dynamics (17).
1) For each p ∈ {σ, v}, we have

W
(
gp
(
ξ̂
)) − W

(
ξ̂
) ≤ 0 ∀ξ̂ ∈ Dp. (26)

2) For all ξ̂ = (σ̂ , φ̂, v̂, b̂) ∈ SĤ and each flowing interval
I j := {t : (t, j) ∈ dom ξ̂ } with b̂(t j , j) = −1

W
(
ξ̂ (t2, j)

) − W
(
ξ̂ (t1, j)

) ≤
∫ t2

t1

−c3v̂(t, j)2dt (27)

for all t1, t2 ∈ I j with t1 ≤ t2.
3) There exists a scalar W̄ > 0 such that each solution

ξ̂ = (σ̂ , φ̂, v̂, b̂) ∈ SĤ satisfying ξ̂ (t j , j − 1) ∈ D̂v ,
jumping to ξ̂ (t j , j) = ĝv(ξ̂ (t j , j − 1)), and then flowing
up to ξ̂ (t j+1, j) ∈ D̂σ satisfies

W
(
ξ̂
(
t j , j

))≥ W̄ 
⇒ W
(
ξ̂
(
t j+1, j

))≤ W
(
ξ̂
(
t j , j

))
.

(28)

While not being suitable for proving attractivity, function W
in (23) and Lemma 2 are useful to prove in the next proposition
that solutions to (17) are bounded.

Proposition 4: Under Assumptions 1 and 2, for each com-
pact set K, there exists M > 0 such that each solution
ξ̂ ∈ SĤ(K) satisfies ξ̂ (t, j) ∈ MB for all (t, j) ∈ dom ξ̂ .

Proof: Consider dynamics (17), and notice that the state
b̂ is bounded because it evolves in a bounded set. Focusing
the attention on the remaining states x̂ = (σ̂ , φ̂, v̂), their flow
obeys the (flow) dynamics in (6), where A is Hurwitz due
to Assumption 2, and the term multiplying e3 is bounded
by Fs due to Assumption 1. In particular, from standard
bounded-input bounded-output (BIBO) results for linear sys-
tems, there exist scalars kA ≥ 1 and h A > 0 such that any
solution ξ̂ = (x̂, b̂) satisfies5

|x̂(t, j)|2 ≤ kA|x̂(t j , j
)|2 + h A ∀t ∈ [

t j , t j+1
]

(29)

where t0 = 0, t j (with j ≥ 1) denotes a jump time, and
possibly t j+1 = +∞ with the last flowing interval being
open and unbounded. Consider, now, a solution to (17), which
may: 1) flow forever (i.e., experiences no jumps); in that
case, bound (29) with j = 0 provides the desired global
bound; 2) exhibit one jump only; in that case, the desired
global bound is obtained by concatenating twice bound (29);
or 3) flow and/or jump multiple times; in that case, the solution
alternately jumps from D̂σ and D̂v (due to the toggling nature
of b̂). Hence, the solution jumps from D̂v at either t1 or (at
most) at t2. Consider the scenario of a first jump happening

from D̂σ at time (t1, 0), which leads to
∣∣x̂(t1, 1)

∣∣2 = ∣∣x̂(t1, 0)
∣∣2

due to ĝσ in (17e), and then a second jump from D̂v at time
(t2, 1), which leads to

∣∣x̂(t2, 2)
∣∣2 ≤ ∣∣x̂(t2, 1)

∣∣2 due to ĝv in

5Note that classical BIBO bounds involve the norm not squared, but those
are easily extended to (29) by using (k|x0| + h)2 ≤2k2|x0|2+2h2.

(17e) and D̂v in (17g) (indeed,
∣∣φ̂(t2, 2)

∣∣ = (k p/ki)
∣∣σ̂ (t2, 1)

∣∣ ≤∣∣φ̂(t2, 1)
∣∣ from constraint σ̂ φ̂ ≥ (k p/ki)σ̂

2 ≥ 0 in D̂v , which
is equivalent to |σ̂ ||φ̂| ≥ (k p/ki)|σ̂ |2). For this described
scenario, concatenating bounds yields

max
(t, j)∈dom ξ̂ ,t+ j≤t2+2

∣∣x̂(t, j)
∣∣2 ≤ k̄ A

∣∣x̂(0, 0)
∣∣2 + h̄ A (30)

where we used k̄ A := k2
A ≥ kA ≥ 1, h̄ A := h A(1 + kA) ≥ h A.

This described scenario can be viewed as the worst-
case scenario because bound (30) also applies to the other
scenario where the jump from D̂σ does not occur and the
jump from D̂v occurs at t1 because k̄ A ≥ kA and h̄ A ≥ h A.
Then, we can consider only this described worst-case scenario
without loss of generality. Inequality (30), hence, establishes
a uniform bound for all solutions, until a first jump from D̂v .

To complete the proof, we must establish a uniform bound
on solutions performing a jump from ξ̂ (t2, 1) ∈ D̂v . To this
end, we use bounds (24) with (29) to arrive at

W
(
ξ̂ (t, j)

) ≤ kW W
(
ξ̂
(
t j , j

)) + hW ∀t ∈ [
t j , t j+1

]
(31)

along any flowing solution, where kW := c̄W cW kA ≥ 1 (since
c̄W ≥ 1, cW ≥ 1, and kA ≥ 1) and hW := c̄W (kAcW F2

s +h A)+
2F2

s > 0.
We are now ready to complete bound (30) beyond hybrid

time (t2, 2). We can focus on solutions exhibiting infinitely
many jumps without loss of generality, by noting that the
analysis also applies to solutions that eventually stop jumping,
because the last bound established below in (34) and (35) will
hold on the last (unbounded) flowing interval. Given any such
solution ξ̂ that keeps exhibiting jumps, denote

W0 := W
(
ξ̂ (t2, 2)

) ≤ c̄W

(
k̄ A

∣∣x̂(0, 0)
∣∣2 + h̄ A

)
+ 2F2

s (32)

where we combined (30) and (24). Due to the toggling nature
of b̂ in dynamics (17), jumps must occur alternatively from
D̂v at times (t2, 1), (t4, 3), and so on (i.e., at jump times
t2, t4, . . . with even indices) and from D̂σ at jump times with
odd indices. We proceed by induction. Assume that, at time
(t2i , 2i) (after a jump from D̂v ), we have

W
(
ξ̂ (t2i , 2i)

) ≤ max
{
kW W̄ + hW ,W0

}
, (33)

which is true for i = 1 (the base case of induction) because
of (32). As for the induction step, (31) yields for j = 2i

W
(
ξ̂ (t, 2i)

) ≤ kW W
(
ξ̂ (t2i , 2i)

) + hW ∀t ∈ [
t2i , t2i+1

]
. (34)

We obtain that W (ξ̂ (t2i+1, 2i)) ≤ max{kW W̄ + hW ,
W (ξ̂ (t2i , 2i))} because, for W (ξ̂ (t2i , 2i)) < W̄ , it holds
that W (ξ̂ (t2i+1, 2i)) ≤ kW W̄ + hW by (34), and for
W (ξ̂ (t2i , 2i)) ≥ W̄ , it holds that W (ξ̂ (t2i+1, 2i)) ≤
W (ξ̂ (t2i , 2i)) by (28) in Lemma 2. Then, W (ξ̂ (t2i+1, 2i)) ≤
max{kW W̄ + hW ,W (ξ̂ (t2i , 2i))} can be propagated to the
subsequent time interval using the nonincrease properties of
W established in (26) and (27) of Lemma 2, as follows:
W
(
ξ̂ (t, 2i + 1)

) ≤ max
{
kW W̄ + hW ,W

(
ξ̂ (t2i , 2i)

)}
∀t ∈ [

t2i+1, t2(i+1)
]
. (35)
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Finally, using again the nonincrease property in (26) and
bound (33) for j = 2i , we obtain

W
(
ξ̂
(
t2(i+1), 2(i + 1)

)) ≤ max
{
kW W̄ + hW ,W

(
ξ̂ (t2i , 2i)

)}
≤ max

{
kW W̄ + hW ,W0

}
.

This corresponds to (33), completes the induction proof, and
establishes that (33) holds for all i ≥ 1.

Summarizing, we combine bounds (34) and (35) [and then
use kW ≥ 1, hW > 0, (33), and, finally, (32)] to obtain for all
(t, j) ∈ dom ξ̂ with t + j ≥ t2 + 2

W
(
ξ̂ (t, j)

) ≤ max
{

kW
(
kW W̄ + hW

) + hW ,

kW

(
c̄W

(
k̄ A

∣∣x̂(0, 0)
∣∣2 + h̄ A

)
+ 2F2

s

)
+ hW

}
.

In other words, W remains uniformly bounded, so does x̂
by (24), and ξ̂ (since b̂ evolves in {−1, 1}), and the proof
of uniform boundedness of solutions is completed. �

B. Semiglobal Dwell Time

Now we establish a second useful property of solutions of
Ĥ, whose stick-to-slip transitions must occur at instants of
time separated by a guaranteed dwell time. This particular
dwell time is uniform in any compact set of initial conditions;
therefore, it is semiglobal.

To formalize our dwell-time result, define the sets

Ŝ1 := {
ξ̂ ∈ �̂ : φ̂ ≥ Fs , v̂ = 0, b̂ = 1

}
Ŝ−1 := {

ξ̂ ∈ �̂ : φ̂ ≤−Fs, v̂ = 0, b̂ = 1
}

Ŝ0 :=
{
ξ̂ ∈ �̂ : φ̂ = k p

ki
σ̂ , |φ̂| < Fs , v̂ = 0, b̂ = 1

}
. (36)

The first two are intuitively associated with stick-to-slip tran-
sitions [see (7)], and the third one completes the image of D̂v

through ĝv . We show in the next proposition that any solution
visiting these sets enjoys a uniform semiglobal dwell time
before its velocity changes sign, unless it reaches the attractor
Â, where it will remain due to Proposition 3(1).

Proposition 5: Let Assumptions 1 and 2 hold. For each
compact set K, there exists δ(K) > 0 such that each solution
ξ̂ = (σ̂ , φ̂, v̂, b̂) ∈ SĤ(K) with ξ̂ (t, j) ∈ Ŝ1∪Ŝ−1∪Ŝ0 satisfies
either: 1) ξ̂ (t ′, j ′) ∈ Â for some t ′ ∈ [t, t +δ(K)] or 2) if case
1 does not hold, then, for each τ ∈ [t, t + δ(K)], we have
(τ, j (τ )) ∈ dom ξ̂ and

ξ̂ (t, j) ∈ Ŝ1 
⇒ v̂(τ, j(τ )) ≥ 0

ξ̂ (t, j) ∈ Ŝ−1 
⇒ v̂(τ, j(τ )) ≤ 0

for all such τ ∈ [t, t + δ(K)].
To the end of proving Proposition 5, we state the next

lemma, where L2 is defined in Assumption 1(4). The straight-
forward proof of the lemma is based on the regularity of the
right-hand side of (11), is omitted due to space constraints but
can be found in [12].

Lemma 3: Let Assumptions 1 and 2 hold.

1) For each M > 0, there exists δ0(M) > 0 such that, for
each initial condition x̃0 = (σ̃0, φ̃0, 0) ∈ MB, the unique
solution x̃ (with x̃(0) = x̃0) to (11) coincides over

[0, δ0(M)] with the unique solution x̌ (with x̌(0) = x̃0)
to

˙̌x = Ax̌ − e3(Fs − L2v̌). (37)

2) There exists δ1 > 0 such that, for each initial condition
x̌0 = (σ̌0, φ̌0, 0) with

σ̌0 ≥ 0, φ̌0 ≥ Fs ,
[
σ̌0

φ̌0

]
�= [

0
Fs

]
(38)

(σ̌0 ≤ 0, φ̌0 ≤ −Fs,
[
σ̌0

φ̌0

]
�= [

0−Fs

]
, respectively), the

unique solution x̌ (with x̌(0) = x̌0) to (37) satisfies for
all t ∈ (0, δ1], v̌(t) > 0, and φ̌(t) > Fs (v̌(t) < 0 and
φ̌(t) < −Fs , respectively).

Proof of Proposition 5: Consider first the case ξ̂ (t, j) ∈ Ŝ1.
If ξ̂ (t, j) = (0, Fs , 0, 1) ∈ Ŝ1, ξ̂ (t, j) = (0, Fs , 0, 1) ∈ Â,

and the solution satisfies case 1 of the proposition. We consider
then ξ̂ (t, j) �= (0, Fs , 0, 1) in the rest of the proof.

By Proposition 4, for each compact set K, there exists
M > 0 such that, for all (t, j) ∈ dom ξ̂ when ξ̂ (t, j) ∈ Ŝ1,
ξ̂ (t, j) ∈ Ŝ1 ∩ MB. Define δ′(K) := min{δ0(M), δ1} > 0, with
δ0(M) and δ1 as in Lemma 3.

Evolution With Only Flow: Suppose that ξ̂ = (x̂, b̂) with
ξ̂ (t, j) ∈ Ŝ1\{(0, Fs , 0, 1)} ∩ MB flows on [t, t + δ′(K)].

Since ξ̂ (t, j) ∈ Ŝ1\{(0, Fs , 0, 1)} ∩ MB, it holds that
x̂(t, j) = (σ̂ (t, j), φ̂(t, j), 0) ∈ MB. Then, Lemma 3(1)
ensures that the unique solution x̃ [with x̃(t) = x̂(t, j)]
to (11) coincides over the interval [t, t + δ′(K)] with the
unique solution x̌ [with x̌(t) = x̂(t, j)] to (37), which is such
that v̌(τ ) > 0 and φ̌(τ ) > Fs for all τ ∈ [t, t + δ′(K)]
by Lemma 3(2) because x̌(t) = x̂(t, j) satisfies (38) (by
combining conditions φ̂ ≥ Fs and σ̂ φ̂ ≥ (k p/ki)σ̂

2 ≥ 0
in Ŝ1).

Since ξ̂ flows according to (17d), its component x̂ satis-
fies (6). Solutions to (6) are unique by Lemma 1(1). Since
x̃ satisfies the conditions in (8) for all τ ∈ [t, t + δ′(K)],
the component x̂ of ξ̂ must coincide with x̃ on the interval
[t, t + δ′(K)]. Hence, (τ, j (τ )) ∈ dom ξ̂ , v̂(τ, j (τ )) ≥ 0, and
φ̂(τ, j (τ )) ≥ Fs for all τ ∈ [t, t + δ′(K)], so the solution ξ̂
satisfies case 2 of the proposition.

Evolution With Flow and Jumps: The only other possible
evolution of ξ̂ entails a jump from D̂σ for some τ1 ∈
[t, t + δ′(K)] such that σ̂ (τ1, j) = 0 [the solution ξ̂ cannot
jump from D̂v due to b̂(t, j) = 1 and ˙̂b = 0 in (17d)].
Since [t, τ1] ⊂ [t, t + δ′(K)], we know from “Evolution with
only flow” above that v̂(τ1, j) ≥ 0 and φ̂(τ1, j) ≥ Fs if ξ̂
flows in Ĉ before jumping from D̂σ . Then, by ĝσ in (17e),
σ̂ (τ1, j +1) = σ̂ (τ1, j) = 0, φ̂(τ1, j +1) = −φ̂(τ1, j) ≤ −Fs ,
v̂(τ1, j + 1) = v̂(τ1, j) ≥ 0, and b̂(τ1, j + 1) = −b̂(τ1, j) =
−1. Define τ2 as the time τ2 ≥ τ1 such that

v̂(τ, j + 1)> 0 for all τ ∈ (τ1, τ2), and v̂(τ2, j + 1)= 0.

(39)

Note that τ2 = τ1 is not excluded. The solution ξ̂ can only
flow on (τ1, τ2) since, with b̂(τ1, j +1) = −1, jumps can only
occur from D̂v where v̂ has to be 0. Moreover, from (39), for
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all τ ∈ [τ1, τ2]
σ̂ (τ, j +1) = σ̂ (τ1, j + 1)+

∫ τ

τ1

−ki v̂(τ̃ , j +1)d τ̃ ≤ 0

φ̂(τ, j +1) = φ̂(τ1, j + 1)+
∫ τ

τ1

(
σ̂ (τ̃ , j +1)− k pv̂(τ̃ , j +1)

)
d τ̃

≤ φ̂(τ1, j + 1) ≤ −Fs

hence

v̂(τ2, j + 1) = 0, σ̂ (τ2, j + 1) ≤ 0

φ̂(τ2, j + 1) ≤ −Fs ,
[
σ̂ (τ2, j+1)
φ̂(τ2, j+1)

]
�= [

0−Fs

]
(40)

where the solution satisfies case (1) of the proposition in case[
σ̂ (τ2, j+1)
φ̂(τ2, j+1)

]
= [

0−Fs

]
.

We rule out the possibility that ξ̂ flows from (40) at
(τ2, j + 1). Indeed, if ξ̂ flowed, there would exist T > 0
by Lemma 1(4) such that the component x̂ of ξ̂ coincides
over [τ2, τ2 + T ] with the unique solution x̃ to (13) with
x̃(τ2) = x̂(τ2, j + 1), which satisfies ṽ(τ ) < 0 for all
τ ∈ (τ2, τ2 + T ]. Such a flowing evolution, however, is not
possible because the condition b̂v̂φ̂ ≥ 0 would be violated on
(τ2, τ2+T ] (shrink T if needed) since b̂(τ2, j+1) = −1. Then,
completeness of maximal solutions in Proposition 1 concludes
that the only possible evolution from (40) at (τ2, j + 1) is a
jump from D̂v .

Now, consider two cases for σ̂ (τ2, j +1) in (40) by defining

σ̂th := Fs

2

ki

k p
> 0 and δ′′ := Fs

2σ̂th
= k p

ki
> 0 (41)

by Assumption 2.
Evolution With Flow and Jumps: σ̂ (τ2, j + 1) ∈ [−σ̂th, 0]:

By ĝv in (17e), σ̂ (τ2, j + 2) = σ̂ (τ2, j + 1) ∈ [−σ̂th, 0],
φ̂(τ2, j + 2) = (k p/ki)σ̂ (τ2, j + 1) ∈ [−(Fs/2), 0], and
b̂(τ2, j +2) = 1. If σ̂ (τ2, j +2) = 0, then the solution satisfies
case (1) of the proposition. Otherwise, no jump can occur
over [τ2, τ2 + δ′′) with δ′′ in (41), and v̂(τ, j + 2) = 0 for all
τ ∈ [τ2, τ2 + δ′′] by Lemma 1(3). Then, (τ, j (τ )) ∈ dom ξ̂
and v̂(τ, j (τ )) ≥ 0 for all τ ∈ [t, τ2 + δ′′] (with τ2 ≥ t from
before), so the solution satisfies case (2) of the proposition.

Evolution With Flow and Jumps: σ̂ (τ2, j + 1) ∈
(−∞,−σ̂th): Recall that σ̂ (τ1, j + 1) = 0, and note that,
for all τ ∈ [τ1, τ2]∣∣ ˙̂σ(τ, j + 1)

∣∣ ≤ ∣∣ ˙̂x(τ, j + 1)
∣∣ ≤ ∣∣A∣∣M + Fs

from (17d), Assumption 1, and Proposition 4. Hence, from
σ̂ (τ2, j +1) = σ̂ (τ1, j +1)+∫ τ2

τ1
˙̂σ(τ, j +1)dτ = ∫ τ2

τ1
˙̂σ(τ, j +

1)dτ , we have∣∣σ̂ (τ2, j + 1)
∣∣ ≤ (∣∣A∣∣M + Fs

)
(τ2 − τ1). (42)

Since
∣∣σ̂ (τ2, j + 1)

∣∣ ≥ σ̂th, (42) implies that(∣∣A∣∣M + Fs
)
(τ2 − τ1) ≥ σ̂th

⇐⇒ τ2 − τ1 >
σ̂th∣∣A∣∣M + Fs

=: δ′′′(K) > 0.

Then, (τ, j (τ )) ∈ dom ξ̂ and v̂(τ, j (τ )) ≥ 0 for all
τ ∈ [t, τ1 + δ′′′(K)] (with τ1 ≥ t from before), so the solution
satisfies case (2) of the proposition.

The proof of the case ξ̂ (t, j) ∈ Ŝ1 is completed by selecting
δ(K) := min{δ′(K), δ′′, δ′′′(K)} > 0. The case ξ̂ (t, j) ∈ Ŝ−1

follows parallel arguments and is omitted.
Consider, now, the case ξ̂ (t, j) ∈ Ŝ0, which is only sketched

because the proof is similar in nature to the previous one
but simpler. In this case, two things may happen: either
|φ̂| = (k p/ki)|σ̂ | is smaller than (Fs/2) and then the solution
must remain in a stick phase from where it cannot jump
(because jumps only from D̂σ are allowed with b̂ = 1, and
these jumps would bring the solution to Â, verifying directly
case 1 of the proposition); or |φ̂| = (k p/ki)|σ̂ | is not smaller
than (Fs/2), which implies that no jump can happen before
some uniform amount of time because |σ̂ | is bounded away
from zero, and σ̇ is bounded.

Based on the previous results, we are now ready to complete
the missing proof of item (2) of Proposition 3.

Proof of Item (2) of Proposition 3: The proof uses Propo-
sitions 1 and 5. In particular, each solution starts in some
compact set K, and after any jump from D̂v , it lands in the
set Ŝ1 ∪ Ŝ−1 ∪ Ŝ0. From this set, Proposition 5 implies that it
flows for some uniform time interval δ(K) (unless it reaches
Â and nothing needs to be proven). Due to the hysteresis
mechanism enforced by the toggling b̂, jumps are alternating
from D̂v , and D̂σ and the guaranteed flow δ(K) after each
jump from D̂v implies that these solutions (which are complete
due to Proposition 1) flow forever. Similarly, any solution
performing a finite number of jumps must flow forever due
to Proposition 1.

C. Semiglobal Simulation by Hybrid Automaton

Based on the results of Section V-B and inspired by the
proof given in [14] for the case of only Coulomb friction,
we now introduce a hybrid model being semiglobally similar
to (17) in the sense of [48, Definition 2.5] (see also [36]). This
model is the key tool used in Section VI to prove Theorem 1.
More specifically, by recalling the (arbitrarily large) compact
set K discussed in Section V-B (see Proposition 5), the
simulation model is parametric in δ > 0 capturing the δ(K)
of Section V-B, and from Proposition 5, we can prove that its
outputs are semiglobally coincident with the solutions to (17).
This similarity property allows proving Theorem 1 because,
for each δ > 0, the simulation model admits an intuitive
and elegant Lyapunov function certifying asymptotic stability.
Inspired by the hybrid automaton model of Coulomb friction
presented in [14], we introduce the simulation model Hδ

parameterized by δ > 0. The overall state of Hδ is

ξ := (σ, φ, v, b, q, τ ) ∈ �
� := {

ξ ∈ R
3 × {−1, 1} × {−1, 0, 1} × [0, 2δ] :

qv ≥ 0, bqσ ≥ 0, σφ ≥ k p

ki
σ 2, bqφ ≥ 0

}
. (43a)

With respect to the state ξ̂ of Ĥ in (17), we add the logical
state q ∈ {−1, 0, 1} (whose sign is never opposite to the sign
of v due to the constraints in �) and the timer τ , ranging in
the compact set [0, 2δ]. The constrained dynamics of Hδ are

Hδ :
{
ξ̇ = F(ξ), ξ ∈ Cslip ∪ Cstick (43b)

ξ+ ∈ G(ξ), ξ ∈ ⋃
p∈{σ,v,0,1,−1} Dp. (43c)
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Fig. 8. Projections to the (σ, φ, v) space of the flow and jump sets in (43f),
indicating the sector condition σφ ≥ (k p/ki )σ

2.

Fig. 9. Hybrid-automaton illustration of (43).

The flow and jump maps F and G of Hδ are defined as

F(ξ) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

−kiv
σ − k pv

−kdv + ∣∣q∣∣φ − q
(
Fs − ∣∣ f (v)

∣∣)
0
0

1 − dz1(τ/δ)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (43d)

G(ξ) :=
⋃

p∈{σ,v,0,1,−1} : ξ∈Dp

{
gp(ξ)

}
,

gσ (ξ) := [
σ −φ v −b q τ

]�
,

gv(ξ) :=
[
σ

kp

ki
σ v −b q τ

]�
,

g0(ξ) := [
σ φ v b 0 τ

]�
,

g1(ξ) := [
σ φ v b 1 0

]�
,

g−1(ξ) := [
σ φ v b −1 0

]�
. (43e)

The flow and jump sets of Hδ are defined as

Cslip := {
ξ ∈ � : ∣∣q∣∣ = 1

}
Cstick := {

ξ ∈ � : v = 0,
∣∣φ∣∣ ≤ Fs , q = 0

}
Dσ := {

ξ ∈ � : σ = 0, b = 1,
∣∣q∣∣ = 1

}
Dv := {ξ ∈ � : v = 0, b = −1, q = 0}
D0 := {

ξ ∈ � : v = 0,
∣∣q∣∣ = 1

}
D1 := {ξ ∈ � : v = 0, φ ≥ Fs , b = 1, q = 0, τ ∈ [δ, 2δ]}

D−1 := {ξ ∈ � : v = 0, φ ≤ −Fs , b = 1, q = 0, τ ∈ [δ, 2δ]}
(43f)

and are visualized in Fig. 8. Based on (43f), we define

C := Cslip ∪ Cstick, D := Dσ ∪ Dv ∪ D0 ∪ D1 ∪ D−1. (43g)

A hybrid automaton corresponding to Hδ is in Fig. 9.
We establish in Proposition 6 that Hδ in (43) captures all

solutions to the original closed-loop model Ĥ in (17) in a
semiglobal fashion, which verifies the semiglobal simulation
of Ĥ by way of Hδ . Importantly, the next proposition allows
extending semiglobally the stability properties of Hδ to Ĥ. For

a hybrid solution ψ , we use, in the proposition, the notation
j (t) := min(t,k)∈domψ k. With a slight abuse of notation, we use
a unified symbol j (·) because the solution under consideration
is always clear from the context.

Proposition 6: Let Assumptions 1 and 2 hold. For each
compact set K and the corresponding δ(K) > 0 characterized
in Proposition 5, for each solution ξ̂ = (σ̂ , φ̂, v̂, b̂) to Ĥ
with ξ̂ (0, 0) = ξ̂0 ∈ K, there exist q0, τ0, and a solution
ξ = (σ, φ, v, b, q, τ ) to Hδ(K) starting at ξ(0, 0) = (ξ̂0, q0, τ0),
such that

σ̂ (t, j(t)) = σ(t, j(t)), φ̂(t, j(t)) = φ(t, j(t))

v̂(t, j(t)) = v(t, j(t)), b̂(t, j(t)) = b(t, j(t)) (44)

for all t ≥ 0 such that ξ̂ (t, j (t)) �∈ Â.
Proof: First, note that strong forward invariance of Â as

per Proposition 3(1) implies that, for any solution ξ̂ , property
ξ̂ (t, j (t)) �∈ Â implies ξ̂ (s, j (s)) �∈ Â for all s ≤ t . Hence,
the semiglobal dwell time conclusions of Proposition 5 apply
for the time instants t considered in (44).

It is apparent that: 1) the timer τ does not affect the
flow or jump maps of components (σ, φ, v, b, q) in (43d)
and (43e) and 2) it may inhibit jumps only from D1 or
D−1, see (43g) and the graphical representation in Fig. 9.
Due to this reason, we begin by selecting τ0 = δ(K) so
that no jumps are inhibited at (0, 0). In fact, the conditions
in the sets D1 and D−1 show them to be suitable liftings
to higher dimensional spaces (involving the extra variables
q and τ ) of, respectively, the sets Ŝ1 and Ŝ−1 defined
in (36). As a consequence, we may prove the simulation prop-
erty (44) without focusing on the timer τ because the fact that
ξ̂ = (σ̂ , φ̂, v̂, b̂) and the components (σ, φ, v, b) of a solution
ξ coincide over a time interval implies, by the semiglobal
dwell time of ξ̂ in Proposition 5, that the condition on τ
enforced in D1 and D−1 is always satisfied since the velocity
v̂ will not change its sign for a time interval of length at least
δ(K). This is done in the next lemma, whose proof amounts
to checking all the possible (nonunique) evolutions of Ĥ and
of Hδ(K), and is here omitted due to space constraints but can
be found in [12].

Lemma 4: Under Assumptions 1 and 2, for each solution
ξ̂ = (σ̂ , φ̂, v̂, b̂) to Ĥ with ξ̂ (0, 0) = ξ̂0 ∈ K, there exists
q0 such that some solution ξ to Hδ(K) with D1 and D−1

replaced by

D̄1 := {ξ ∈ � : v = 0, φ ≥ Fs, b = 1, q = 0} (45a)

D̄−1 := {ξ ∈ � : v = 0, φ ≤ −Fs, b = 1, q = 0} (45b)

(namely, without any τ -induced jump inhibition), starting at
ξ(0, 0) = (ξ̂0, q0, δ(K)) satisfies (44) for all t ≥ 0 such that
ξ̂ (t, j (t)) �∈ Â.

The solution ξ characterized in Lemma 4 never reaches D̄1

or D̄−1 with τ < δ(K); otherwise, the solution ξ̂ would belong
to Ŝ1 or Ŝ−1 in (36), contradicting Proposition 5. Thus, ξ is
also a solution to Hδ(K), and this completes the proof. �

VI. STABILITY ANALYSIS

For the simulation model Hδ of Section V-C, we con-
struct in Section VI-A a weak Lyapunov function V .
Based on V , GAS of Hδ is proven in Section VI-B.
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Finally, in Section VI-C, the semiglobal simulation result of
Proposition 6 is used to prove Theorem 1.

A. Lipschitz Lyapunov Function for the Simulation Model

To prove suitable stability properties of Hδ in (43), we intro-
duce the following lifting of the attractor Â in (18) as:

A := {ξ ∈ � : σ = v = 0, φ ∈ Fs Sign(bq)} (46)

where the extra variables q and τ can be selected arbitrarily
within the set �.

The advantage of introducing Hδ resides in the next locally
Lipschitz Lyapunov function

V (ξ) :=
[
σ
v

]�
⎡
⎣ kd

ki
−1

−1 k p

⎤
⎦[σ
v

]
+ ∣∣q∣∣(φ − bq Fs)

2

+(
1 − ∣∣q∣∣)dz2

Fs
(φ)+ 2

k p

ki
Fs
(
bqσ + (

1 − ∣∣q∣∣)∣∣σ ∣∣)
(47)

where the first three terms can be seen as a smooth version
of the discontinuous Lyapunov-like function (23) and the last
nonsmooth nonnegative term ensures a desirable nonincrease
property along dynamics (43). To deal with the nonsmooth (but
Lipschitz) expression

∣∣σ ∣∣ in the last term, we use the Clarke
generalized gradient ∂V (y) of V at y (see [20, Ch. 2]).

The next proposition establishes useful properties required
of a hybrid Lyapunov function, that is, positive definiteness
with respect to A in C ∪ D (this property being also called
copositivity with respect to C∪D in the research area surveyed
in [18]) and radial unboundedness, nonincrease along flow in
C, and nonincrease across jumps from D. These properties
establish what we could not prove in Lemma 2 for function
W in (23), where (27) was only guaranteed when flowing with
b̂ = −1.

Proposition 7: Under Assumptions 1 and 2, the Lyapunov
function V in (47) satisfies the next properties along dynam-
ics (43).

1) V is positive definite with respect to A in C ∪ D and
radially unbounded relative to C ∪ D.

2) With c3 > 0 in (25), we have

V ◦(ξ) := max
ν∈∂V(ξ)

〈ν,F(ξ)〉 ≤ −c3v
2 ≤ 0 ∀ξ ∈ C. (48)

3) For each p ∈ {σ, v, 1,−1, 0}, we have

�Vp(ξ) := V
(
gp(ξ)

)− V (ξ) ≤ 0 ∀ξ ∈ Dp. (49)

Proof: We prove the proposition item by item.
Item (1): Positive definiteness with respect to A in C ∪ D

follows by verifying that for each ξ ∈ C ∪ D, V (ξ) ≥ 0
and V (ξ) = 0 if and only if ξ ∈ A. To see this, for each
ξ ∈ C ∪ D, V is a sum of nonnegative terms in (47) since
the 2 × 2 matrix is positive definite from Assumption 2, and
bqσ ≥ 0 in C ∪ D, see � in (43a). Moreover, for each
ξ ∈ C ∪ D, V (ξ) = 0 if and only if ξ ∈ A because ξ ∈ A
implies that V (ξ) = ∣∣q∣∣(φ−bq Fs)

2 = 0, and V (ξ) = 0
implies that all the nonnegative terms of the sum in (47) must
be zero: hence, σ = v = 0; for

∣∣q∣∣ = 1, φ = bq Fs; for
q = 0, φ ∈ [−Fs, Fs ], and the last two cases imply together
φ ∈ Fs Sign(bq). Radial unboundedness must be checked only
in the σ , v, and φ components because b, q , and τ are bounded

in C ∪ D ⊂ �. To this end, nonnegativity of the last two
terms in (47) and positive definiteness of

[
(kd/ki ) −1

−1 kp

]
(from

Assumption 2) show the result.
Item (2): For the derivation of V ◦, we use (d/dφ)

(dz2
Fs
(φ)) = 2dzFs (φ), and ∂(

∣∣σ ∣∣) = Sign(σ ). From (43d)

V ◦(ξ)

= 2
kd

ki
σ σ̇ − 2vσ̇ − 2σ v̇ + 2k pvv̇ + 2

∣∣q∣∣(φ − bq Fs)φ̇

+2
(
1 − ∣∣q∣∣)dzFs (φ)φ̇ + 2

k p

ki
Fsbqσ̇

+ max
ς∈Sign(σ )

(
2

k p

ki
Fs
(
1 − ∣∣q∣∣)ςσ̇)

= 2
kd

ki
σ(−kiv)− 2v(−kiv)− 2σ

(−kdv + ∣∣q∣∣ φ − q(Fs

−∣∣ f (v)
∣∣)) + 2k pv

(−kdv + ∣∣q∣∣ φ − q
(
Fs − ∣∣ f (v)

∣∣))
+2

∣∣q∣∣(φ − bq Fs)
(
σ − k pv

) + 2
(
1 − ∣∣q∣∣)dzFs (φ)

(
σ − k pv

)
+2

k p

ki
Fsbq(−kiv)+ max

ς∈Sign(σ )

(
2

k p

ki
Fs
(
1 − ∣∣q∣∣)ς(−kiv)

)
.

In this expression, the deadzone term is zero because
∣∣q∣∣ = 1

in Cslip, and q = 0 and
∣∣φ∣∣ ≤ Fs in Cstick; similarly, the term in

the maximum is zero because
∣∣q∣∣ = 1 in Cslip, and q = 0 and

v = 0 in Cstick. Since
∣∣q∣∣q = q for ξ ∈ �, some computations

yield

V ◦(ξ) = −2 c3 v
2 + 2qσ

(
Fs −

∣∣ f (v)
∣∣) − 2Fsbqσ

−2k pqv
(
Fs −

∣∣ f (v)
∣∣)

≤ −2 c3 v
2 + 2qσ

(
Fs −

∣∣ f (v)
∣∣)

−2Fsbqσ ≤−2 c3 v
2 ≤ 0

where the first inequality follows from qv ≥ 0 in C and
Fs − ∣∣ f (v)

∣∣ ≥ 0 for all v by Assumption 1(1), and the sec-
ond inequality follows from bqσ ≥ 0 in C and 2qσ(Fs −∣∣ f (v)

∣∣) − 2Fsbqσ ≤ 2
∣∣q∣∣∣∣σ ∣∣(Fs − ∣∣ f (v)

∣∣) − 2 Fs

∣∣q∣∣∣∣σ ∣∣ =
−2

∣∣q∣∣∣∣σ ∣∣∣∣ f (v)
∣∣ ≤ 0.

Item (3): In (49), we address separately each p correspond-
ing to a jump from Dp with jump map gp.

Jump p = σ : For each ξ ∈ Dσ ,
∣∣q∣∣ = ∣∣q+∣∣ = 1 and σ = 0,

so

�Vσ (ξ) = (
φ+ − b+q Fs

)2 − (φ − bq Fs)
2

= (−φ + bq Fs)
2 − (φ − bq Fs)

2 = 0.

Jump p = v: For each ξ ∈ Dv , q = q+ = 0, so

�Vv(ξ) = dz2
Fs

(
φ+) − dz2

Fs
(φ) = dz2

Fs

(∣∣φ+∣∣) − dz2
Fs

(∣∣φ∣∣) ≤ 0

because
∣∣φ+∣∣ = (k p/ki)

∣∣σ ∣∣ ≤ ∣∣φ∣∣ from constraint
σφ ≥ (k p/ki)σ

2 ≥ 0 in Dv , which is equivalent to∣∣σ ∣∣∣∣φ∣∣ ≥ (k p/ki)
∣∣σ ∣∣2.

Jump p ∈ {1,−1}: For each ξ ∈ D−1 or ξ ∈ D1,
b = b+ = 1, q = 0, and

∣∣q+∣∣ = 1, so

�Vi(ξ) = (
φ −bq+Fs

)2−dz2
Fs
(φ)+2

k p

ki
Fsbq+σ − 2

k p

ki
Fs

∣∣σ ∣∣
≤ (

φ −q+Fs
)2− dz2

Fs
(φ) = 0

where the inequality holds since bq+σ ≤ ∣∣σ ∣∣ and the last
equality holds since q+φ ≥ Fs .
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Jump p = 0: For each ξ ∈ D0,
∣∣q∣∣ = 1 and q+ = 0, so

�V0(ξ) = dz2
Fs
(φ)− (φ − bq Fs)

2 + 2
k p

ki
Fs

∣∣σ ∣∣ − 2
k p

ki
Fsbqσ

= dz2
Fs
(φ)− (φ − bq Fs)

2 ≤ 0

where the last equality holds since bqσ = ∣∣σ ∣∣ (by bqσ ≥ 0,∣∣b∣∣ = 1, and
∣∣q∣∣ = 1 in D0) and the inequality holds since

bq ∈ {−1, 1}. �

B. Global Asymptotic Stability of the Simulation Model

Proposition 7 shows that function V in (47) is a weak
Lyapunov function certifying stability of A in (46) for Hδ . To
establish global attractivity (thus, global asymptotic stability),
we exploit the hybrid invariance principle in [42, Th. 1] in the
next proposition.

Proposition 8: Under Assumptions 1 and 2, for each δ > 0,
the set A in (46) is GAS for Hδ in (43).

Proof: The proof is based on [42, Th. 1]. The set A in (46)
is compact, and Hδ in (43) satisfies the hybrid basic conditions
in [25, Assumption 6.5]. We check the other assumptions
of [42, Th. 1] in the following.

1) G(D ∩ A) ⊂ A for G in (43b): Indeed, gσ (Dσ ∩ A) ⊂
gσ (A) ⊂ A, gv(Dv∩A) ⊂ A, g0(D0∩A) ⊂ g0(A) ⊂ A,
g1(D1 ∩ A) ⊂ A, and g−1(D−1 ∩ A) ⊂ A.

2) Conditions on V : The Lyapunov function V satisfies C∪
D ⊂ dom V , is continuous in C∪D and locally Lipschitz
near each point in C, and is positive definite with respect
to A in C∪D and radially unbounded relative to C∪D by
Proposition 7(1). The Lyapunov nonincrease conditions
have been established in Proposition 7(2-3).

3) No Complete Solution Keeps V Constant and Nonzero:
We preliminarily show that the dwell time enforced by
the timer τ in Hδ and the logical variables imply that
complete solutions exhibit an infinite amount of flow. If
not, we could remove from the automaton of Fig. 9 the
jumps from D1 or D−1 (which are only enabled if τ ≥
δ). The remaining jumps are those in Fig. 10, revealing
that, when τ < δ, after at most two jumps, it must hold
that q = 0. From q = 0, the only possible jump is from
Dv (where b = −1), which maps to b = 1, so that at
most one jump from Dv is possible. In summary, at most
three jumps can happen when τ < δ, and the solution
would not be complete. This proves that all complete
solutions exhibit an infinite amount of flow.

Now suppose, by contradiction, that there exists a
complete solution ξbad to Hδ that keeps V constant
and nonzero. Being complete, this solution exhibits an
infinite amount of flow, which should happen outside A
(otherwise, V would be zero). Moreover, ξbad must start
with a zero initial velocity v, which should remain zero
all along with the solution, because v remains constant
across any possible jump, and any flowing solution from
v �= 0 will cause a decrease of V from item (2) of
Proposition 7.

Such a flowing solution with v ≡ 0 cannot flow
in Cslip\A. Indeed, f (v) = L2v for all

∣∣v∣∣ ≤ εv by

Fig. 10. Auxiliary version of the hybrid automaton in Fig. 9 used in the
proof of Proposition 8.

Assumption 1(4). We have then from (43d) that the first
three components of F are

for q = 1 :
[ −ki v

σ−kpv
−kd v+φ−Fs+L2v

]
=: AL2

[
σ

φ−Fs
v

]
,

for q = −1 :
[ −ki v

σ−kpv
−kd v+φ+Fs +L2v

]
=: AL2

[
σ

φ+Fs
v

]

with AL2 :=
[

0 0 −ki
1 0 −kp

0 1 −kd +L2

]
. Since the pair ([ 0 0 1 ], AL2) is

observable, the only solutions (σ, φ, v) compatible with
v ≡ 0 are constant and correspond to the points where

v = 0 and

[ q
b
σ
φ

]
=
[

1
1
0
Fs

]
and

[ q
b
σ
φ

]
=
[ −1

1
0−Fs

]
, where the

value of b is imposed by the constraint bqφ ≥ 0 in Cslip.
By (46), both points belong to A, so ξbad cannot evolve
there.

We conclude by showing that ξbad cannot flow indef-
initely in Cstick\A. Indeed, the first three components
of F in (43d) are (0, σ, 0), with σ being nonzero
(otherwise, ξbad would be in A). With such indefinite
flowing, φ would grow unbounded and this contradicts∣∣φ∣∣ ≤ Fs (required in Cstick\A). In particular, any such
ξbad must eventually reach a point, where (v, σ, φ, b) =
(0, σ, sign(σ )Fs , 1) (possibly after a jump from Dv ),
from where it must jump from D1 or D−1 to a point
where

∣∣q+∣∣ = 1, σ+ = σ is nonzero, and b+ = 1. Any
subsequent flow (which must happen because an infinite
amount of flow occurs) must occur in Cslip\A and is
ruled out by the previous analysis. Hence, the proof is
complete. �

C. Proof of Theorem 1

We are now able to prove Theorem 1 because the semiglobal
similarity properties of Proposition 6 allow extending the
stability results of Proposition 8 to system Ĥ in (17), provided
that solutions are bounded as per Proposition 4.

First, define

Â6 := {(
σ̂ , φ̂, v̂, b̂, q, τ

) : σ̂ = v̂ = 0, |φ̂| ≤ Fs ,

b̂ ∈ {−1, 1}, q ∈ {−1, 0, 1}, τ ∈ [0, 2δ]
}
,

which extends Â ⊂ R
4 in (18) to the new directions q and τ

so that Â6 ⊂ R
6. It holds that Â6 ⊃ A with A in (46). Then,

for each ξ = (ξ̂ , q, τ ) ∈ �∣∣ξ ∣∣A := inf
y∈A

∣∣ξ − y
∣∣ ≥ inf

y∈Â6

∣∣ξ − y
∣∣

= inf
y∈Â6

∣∣(ξ̂ , q, τ
) − y

∣∣ = ∣∣ξ̂ ∣∣Â. (50)
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We need to show stability and global attractivity of Â, where
the latter entails by [25, Definition 7.1] that, for each solution
ξ̂ to Ĥ, ξ̂ is bounded and satisfies

lim
t+ j→∞

∣∣ξ̂ (t, j)
∣∣
Â = 0 (51)

since maximal solutions are complete by Proposition 1.
Boundedness of solutions is guaranteed by Proposition 4.
Proposition 6 guarantees that, for each compact set K and
the corresponding δ(K) > 0, each solution ξ̂ to Ĥ with
ξ̂ (0, 0) ∈ K coincides with the (σ, φ, v, b) components
of some solution ξ to Hδ(K) for all t ≥ 0 such that
ξ̂ (t, j (t)) �∈ Â, i.e., it holds from (44) that ξ(t, j (t)) =
(ξ̂ (t, j (t)), q(t, j (t)), τ (t, j (t))) for all t ≥ 0 such that
ξ̂ (t, j (t)) �∈ Â. Then, (50) implies that∣∣ξ(t, j(t))

∣∣
A ≥ ∣∣ξ̂ (t, j(t))

∣∣
Â (52)

for all t ≥ 0 such that ξ̂ (t, j (t)) �∈ Â. If there exists
t ′ ≥ 0 such that ξ̂ (t ′, j (t ′)) ∈ Â, then (51) is proven by
Proposition 3(1). If instead ξ̂ (t, j (t)) /∈ Â for all t in the
domain of ξ̂ , then supt ξ̂ = +∞ by Proposition 3(2), and then,
supt ξ = +∞ as well by (44). Moreover, Proposition 8 implies
that limt→∞

∣∣ξ(t, j (t))
∣∣
A = 0, which with (52) proves (51)

and global attractivity of Â.
Since A is compact and both Hδ and Ĥ satisfy the hybrid

basic conditions [25, Assumption 6.5], the global asymptotic
stability of A for Hδ in Proposition 8 implies uniform global
stability and uniform global attractivity by [25, Th. 7.12].
Hence, Â is uniformly globally attractive. Since Â is also
strongly forward invariant by Proposition 3(1), then Â is
stable by [25, Proposition 7.5], which, together with its global
attractivity, implies its global asymptotic stability.

VII. CONCLUSION

We proposed a novel reset integrator control strat-
egy for motion systems with unknown Coulomb and
velocity-dependent friction (including the Stribeck effect) that
achieves global asymptotic stability of the setpoint. The
working principle and effectiveness of the controller are exper-
imentally demonstrated in a case study on a high-precision
positioning application. Interesting future research direc-
tions include addressing more general nonsmooth multibody
mechanical systems with several contact points with friction,
in addition to investigating the use of set-valued chattering-free
sliding mode control [3], thus obtaining finite-time stabiliza-
tion and possibly exploiting the tools given in [4], for motion
control applications.
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