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Abstract: This paper considers the solution of a real-time optimization problem using adaptive
extremum seeking control for a class of unknown discrete-time nonlinear systems. It is assumed
that the equations describing the dynamics of the nonlinear system and the cost function to
be minimized are unknown and that the objective function is measured. The main contribution
of the paper is to formulate the extremum-seeking problem as a time-varying discrete-time
estimation problem. The proposed approach is applied in the design of nonlinear model
predictive control algorithms where the extremum-seeking controller is used to perform the
real-time optimization of the MPC. A simulation study and an experimental study is presented
that demonstrates the effectiveness of the proposed technique.
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1. INTRODUCTION

Extremum-seeking control (ESC) is a real-time optimiza-
tion technique that is designed to track the optimum of a
measured objective function. This approach, which dates
back to the 1920s Leblanc [1922], provides an ingenious
mechanism by which a system can be driven to the equi-
librium of an unknown dynamical system that optimizes a
measured variable of interest Tan et al. [2010]. Although
the concept of ESC can be attractive for the solution of
real-time optimization in practice, its development was
hindered by the lack of stability results. In the late 1990s,
Krstic and co-workers provided the first proof of conver-
gence of a standard perturbation based extremum seeking
scheme for a general class of nonlinear systems.

The vast majority of existing results on ESC have focussed
on continuous-time systems. Although discrete-time sys-
tems can be treated in an essentially similar fashion, the
application of gradient descent in a discrete-time setting
requires some care. A discrete-time version of the standard
ESC loop was studied in Ariyur and Krstic [2003] and
Choi et al. [2002] where convergence results similar to
continuous time systems are obtained. A similar algorithm
was also proposed in Killingsworth and Krstic [2006] for
the tuning of PID controllers in unknown dynamical sys-
tems using ESC. Discrete-time ESC subject to stochastic
perturbations is studied in Manzie and Krstic [2009]. The
use of approximate parameterizations of the unknown cost
function using quadratic functions was recently proposed
in Ryan and Speyer [2010]. An alternative ESC-like ap-
proach was proposed in Teel and Popovic [2001]. In this
study, a trajectory based approach is used to analyze the
properties of nonlinear optimization algorithms as dynam-
ical systems. It is shown that properties of the nonlinear-

optimization algorithms are suitable to assess the con-
vergence of certain classes of ESC applied in a sampled-
data approach. This approach was recently studied in the
context of global sampling methods in Nesic et al. [2013]
where trajectory based properties of nonlinear optimiza-
tion methods are used to establish robust convergence. The
main objectives with the trajectory based techniques is to
analyze the properties of optimization algorithms assum-
ing that they can converge to the true optimum using only
the measurement of the objective function and possibly the
constraints. In the context of ESC, one must either imply
that the nonlinear optimization techniques do not rely on
gradient information or, if they do, this gradient must be
either measured or estimated. Some techniques such as
Zhang and Ordóñez [2009] and Zhang and Ordóñez [2012]
make use of sporadic gradient measurements in extremum
seeking control. Other techniques Srinivasan [2007] go as
far as requiring the existence of multiple (nearly) identical
systems to enable the estimation of gradient information.

If a gradient based technique is considered, the estima-
tion of the gradient must be addressed in some way. As
highlighted above, this may be achieved by either parame-
terizing the cost function or by introducing a dither signal
such that reliable gradient information can be extracted
on average. If one considers a fixed parameterization of
the cost, such as a quadratic cost function as in Ryan and
Speyer [2010], (also Guay et al. [2004] and Cougnon et al.
[2011] in continuous-time), the basic assumptions are that
the parameters are sufficient slowly time-varying or con-
stant and that the parameterization provides an accurate
approximation of the unknown cost function. Since there is
no way to establish in advance whether a given parameteri-
zation is suitable to achieve the optimization task, some es-
timation bias and loss in performance may result from the
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application of such techniques. In this paper, we provide
an alternative discrete-time extremum-seeking technique
which is based on the estimation of the gradient as a
time-varying parameter. The main difference with existing
technique is that the estimated time-varying gradient does
not require any approximation or parameterization of the
cost. The time-varying parameter estimation technique is
used to remove the need for averaging system to establish
the convergence of the extremum seeking controller to
the unknown steady-state optimum of a measured output
function. It also avoids the need to use the frequency of
the dither signal as a singular perturbation parameter.
The proposed ESC algorithm provides more freedom in
the tuning of the ESC loop to achieve improvements in
transient performance.

In this paper, we propose the application of the discrete-
time ESC algorithm for the solution of nonlinear model
predictive control (NMPC) problems. In particular, the
ESC algorithm is applied to perform the real-time dy-
namic optimization in NMPC. The ESC-based NMPC
is proposed as an alternative to fast MPC algorithms
that have been proposed in the literature. Examples of
fast algorithms include embedded online-optimization for
MPC Jerez et al. [2013], tailored MPC algorithm Wang
and Boyd [2010], explicit MPC algorithms Bemporad et al.
[2011] and fast gradient approaches (Alamir [2013], De-
Haan and Guay [2007]). The existing techniques for fast
MPC employ various strategies to reduce computing time.
Fast online optimization is achieved by either combining
off-line and on-line computations, by designing highly tai-
lored codes or by relaxing closed-loop performance require-
ments. One of the defining feature of most techniques is
that they rely on a highly structured approach. The ESC
approach proposed can be qualified as a highly unstruc-
tured approach that relies only on a parameterization of
the predicted stage cost. The stage cost of the MPC is
simply used as the measured cost to be optimized by the
ESC.

The paper is organized as follows. A brief problem de-
scription is given in section 2. In section 3, the proposed
ESC controller is presented for processes described by a
static map. The application of the technique to a systems
with unknown dynamics is presented in section 4. The ESC
is applied in the design of a nonlinear MPC in section 5
for the swing up of a rotary inverted pendulum. This is
followed by brief conclusions in section 6.

2. PROBLEM DESCRIPTION

Consider a nonlinear system

xk+1 = xk + f(xk, uk) (1)

yk = h(xk) (2)

where xk ∈ Rn is the vector of state variables at the kth

time step, uk is the vector of input variables at the kth
time step taking values in U ⊂ Rp and yk ∈ R is the
variable to be minimized evaluated at the kth time step.
It is assumed that f(xk, uk) is a smooth vector valued
function of xk and uk and that h(xk) is a smooth function
of xk.

The objective of ESC is to steer the system to the
equilibrium x∗ and u∗ that achieves the minimum value
of y(= h(x∗)). The equilibrium (or steady-state) map is
the n dimensional vector π(u) which is such that:

f(π(u), u) = 0.
The equilibrium cost function is given by:

y = h(π(u)) = `(u) (3)
Thus, at equilibrium, the problem is reduced to finding the
minimizer u∗ of y = `(u∗).

Some basic assumptions are required to ensure that this
problem is well-posed.
Assumption 1. The equilibrium cost (3) is such that

(1) ∂`(u∗)
∂u = 0

(2) ∂2`
∂u∂uT

> αI, ∀u ∈ U .
where α is a strictly positive constant.

3. STATIC MAP

In this section, we consider the extremum-seeking problem
for a static map:

y = `(u)
that satisfies Assumption 1.

In addition, the following assumptions are required.
Assumption 2. The static-map ` is such that

(1) ‖y‖ ≤ Y
(2)

∥∥ ∂`
∂u

∥∥ ≤ L1

(3)
∥∥∥ ∂2`
∂u∂uT

∥∥∥ ≤ L2

∀u ∈ U with positive constants Y > 0, L1 > 0 and L2 > 0.

In the development below, the minimization of y is per-
formed in real-time. The input u is taken as a time-varying
signal. That is,

yk = `(uk) (4)
Consider the incremental variable, ∆yk = yk+1 − yk, then
it follows that:

∆yk = `(uk+1)− `(uk)
Given that `(u) is continuously differentiable, one can
rewrite ∆yk as follows:

∆yk =
∫ 1

0

∂`(λuk+1 + (1− λ)uk)
∂u

dλ∆uk,

where ∆uk = uk+1 − uk. One can parameterize the quasi
steady-state dynamics of the static map as:

∆yk = θTk ∆uk (5)
where the parameter

θk =
∫ 1

0

∂`(λuk + (1− λ)uk+1)
∂u

dλ

is a time-varying parameter. The strategy considered here
is to develop a technique that can effectively estimate the
time-varying behaviour of the parameters.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1024



We must first make the following assumption concerning
the input dynamics.
Assumption 3. The input signal uk is such that

uk ∈ U ∀k ≥ 0.
Remark 4. The Lyapunov argument presented below con-
firms that this can always be assumed. We note that
one can enforce the boundedness of u via a projection
algorithm. The inclusion of the projection algorithm would
complicate the development below. However, it is entirely
possible to do so in a formal way.

Finally, we note that by definition of θk, smoothness of
`(u) and boundedness of its gradient and hessian over all
u ∈ U , it follows that:

‖θk+1 − θk‖ ≤ L2‖uk+1 − uk‖+ L2‖uk+2 − uk+1.‖ (6)

The design of the extremum seeking routine is based
on the local time-varying parameterization of the cost
function (5). The first step consists in the estimation of the
time-varying parameters θ. In the second step, we define
a suitable controller that achieves the extremum-seeking
task.

3.1 Parameter estimation

The model parameterization is given by:

∆yk = θTk ∆uk = φkθk

where φk = [∆uk] and θk = [θ0,k, θ1,k]T . Let the estimator
model for (5) be chosen as

∆ŷk = θ̂Tk ∆uk = φTk θ̂k (7)

where θ̂k is the vector of parameter estimates. We define
the output prediction error as ek = ∆yk −∆ŷk.

The proposed parameter estimation update approach is
given as follows.

Let Σ ∈ Rnθ×nθ be generated by the following recursion

Σk+1 = αΣk + φkφ
T
k , Σ0 = α1I � 0, (8)

where α1 and α are strictly positive constants to be
assigned. One considers the parameter update law given
by

Σ−1
k+1 =

1
α

Σ−1
k −

1
α2

Σ−1
k φkΥkφ

T
k Σ−1

k , Σ−1
0 =

1
α
I (9)

¯̂
θk+1 =Proj

[
θ̂k +

1
α

Σ−1
k φkΥkek,Θ0

]
, θ̂0 = θ0 ∈ Θ0(10)

where Υk = (1 + 1
αφ

T
k Σ−1

k φk)−1 and ¯̃
θk = ¯̂

θk − θk.

The operator Proj represents an orthogonal projection
onto the surface of the uncertainty set applied to the
parameter estimate. Following Goodwin and Sin [2013],
the projection operator is designed such that

• θ̂k+1 ∈ Θ0

• ¯̃
θTk+1Σk+1

¯̃
θk+1 ≤ θ̃Tk+1Σk+1θ̃k+1

One possible algorithm for the projection algorithm is
as follows. Define the upper bound for ‖θ‖ (= L1). Let
R =Chol(Σk+1) denote the Cholesky factor of Σk+1. Then
we perform the following:
Algorithm 1. If ‖θ̂k+1‖ ≥ L1 then

• Let δ = L1θ̂k+1

‖θ̂k+1‖
,

• Let zρ =
√
δTΣk+1δ,

• With ρ = Rθ̂k+1 define ρ̄ = ρzρ
‖ρ‖ ,

• Let ¯̂
θk+1 = R−1ρ̄.

Otherwise,

• Let ¯̂
θk+1 = θ̂k+1.

It is assumed that the trajectories of the system are such
that the following condition is met.
Assumption 5. Goodwin and Sin [2013] There exists con-
stants βT > 0 and T > 0 such that

1
T

k+T−1∑
i=k

φiφ
T
i > βT I, ∀k > T. (11)

This requirement is a standard persistency of excitation
condition that can be found in most references on adaptive
control and adaptive estimation. The reader is referred to
Goodwin and Sin [2013] for more details.

3.2 Controller design

We propose the following gradient descent controller:

uk+1 = uk − kg θ̂k + dk (12)
where dk is a bounded dither signal and kg is the optimiza-
tion gain, a positive constant to be assigned. It is assumed
that ‖dk‖ ≤ D ∀k ≥ 0 where D is a positive constant. Note
that, since θ̂k and dk are assumed to be bounded, then the
controller (12) is such that ‖uk+1 − uk‖ ≤ kgL1 +D.

4. OPTIMIZATION IN UNKNOWN DYNAMICAL
SYSTEMS

In this section, we consider the application of the optimiza-
tion approach proposed in the last section to dynamical
systems (1) with cost function (2). The approach proposed
is to consider a two time-scale approach. In this approach,
the dynamical system is assumed to operate at a faster
time-scale with sampling rate ε∆t. The steady-state op-
timization routine operates at the slow time scale with
sampling time ∆t. The proposed closed-loop extremum
seeking controller takes the form:

xk+1 = xk − f(xk, uk) (13a)
yk = h(xk) (13b)

uk+1 = uk − εkg θ̂k + εdk (13c)

∆ŷk = φTk θ̂k (13d)

Σ−1
k+1 = Σ−1

k + ε

(
1
α
− 1
)

Σ−1
k

− ε

α2
Σ−1
k φkΥkφ

T
k Σ−1

k (13e)

¯̂
θk+1 = Proj

[
θ̂k +

ε

α
Σ−1
k φkΥkek,Θ0

]
(13f)
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where Υk = (1 + 1
αφ

T
k Σ−1

k φk)−1.

We let ũk = uk−u∗ and define x̃k = xk−π(ũk +u∗). The
dynamics of x̃k are given by the recursion:

x̃k+1 = x̃k − π(uk+1) + π(uk)
+ f(x̃k + π(uk), uk).

At the faster time-scale, ε = 0, it is assumed that the
equilibrium xk = π(uk) is locally asymptotically stable.
As a result, the origin is a locally asymptotically stable
equilibrium of the boundary layer dynamics:

x̃k+1 = x̃k + f(x̃k + π(uk), uk) (14)

where uk can be interpreted as a constant vector in U .
Assumption 6. By the converse theorem of Lyapunov in
discrete-time Khalil [1992], it follows that there exists a
continuous function V (x̃) such that:

(1) there exists K functions α1 and α2 such that ∀x̃ ∈ D
α1(‖x̃‖) ≤ V (x̃) ≤ α2(‖x̃‖)

(2) a class K function α3 such that
V (x̃k+1)− V (x̃k) ≤ −α3(‖x̃‖).

Remark 7. It is also known that if there exists a contin-
uous function V that satisfies the last two inequalities in
Assumption 6 then there also exists a smooth function W
that satisfies the same inequalities. Let us therefore assume
that V (x) is a smooth vector-valued function.

Next we state the main result of the paper.
Theorem 1. The discrete-time time-varying extremum seek-
ing controller is such that there exists a small parameter
ε∗ such that ∀ε ∈ (0, ε∗) for which the closed-loop system
(13) subject to the assumptions 1-6 converges to a O(ε)
neighbourhood of the unknown optimum u∗.

Proof: See Appendix 7.

5. ESC FOR MPC

In this section, we consider the use of ESC to perform
the dynamic real-time optimization that arise in the im-
plementation of a model predictive controller. A process
model is used to predict the output of the system at
future time instants. These outputs are usually obtained
by minimizing a certain cost function depending on the
state variables, where the future control sequence acts as
a design variable. Then, a receding strategy is applied so
that at each instant the horizon is displaced towards the
future, which involves the application of the first control
signal of the sequence calculated at each step Camacho
and Bordons [2004]

Since MPC relies on minimization of a cost function, the
computations are expensive and may be time consuming.
In most cases, an iterative optimization method has to
be used to calculate the optimal control sequence. This
process can be relatively slow, which gives rise to a mo-
tivation to investigate an alternative to numerical opti-
mization algorithms that are generally used to perform
the minimization tasks. A possible alternative is to use
Extremum Seeking Control as presented in the previous
sections. Good performance of the ESC requires a fair
amount of parameter tuning, which can be challenging and

time consuming as well. This is in contrast to the use of
numerical iterative optimization methods such as the algo-
rithms available in the optimization toolbox of MATLAB,
which require little or no tuning. These algorithms, how-
ever, may not be able to solve the optimization problem
fast enough to perform the MPC dynamic optimization
in real-time. An implementation of the ESC algorithm in
MPC, on the other hand, is expected to be fast since it
only requires a unique model prediction at each sampling
instant. The question that arises is the extent to which
ESC is a valuable alternative to an iterative optimization
method in MPC. The results of this study are presented
in the following sections.

5.1 Simulation study

To investigate the performance of the application of ESC
to MPC, the swing-up and stabilizing control of a rotary
inverted pendulum is discussed. The system considered is
the Quanser rotary inverted pendulum system, which is
driven by a rotary servo motor system. A rotary pendulum
arm is mounted to an output gear attached to the motor.
At the end of the arm, the pendulum is attached. The goal
is to swing-up the pendulum to its unstable equilibrium
point at the upright position and stabilize it. A nonlinear
model of the system is derived by means of the Euler-
Lagrange equations. They are given by:

(
mpr

2 + Jb
)
θ̈+mprα̈lp cos(α)
−mprα̇

2lp sin(α) = u
(15a)

mplp cos(α)θ̈r−mplp sin(α)α̇θ̇r
+mpα̈l

2
p −mpglp sin(α) = 0

(15b)

where mp = 0.125 [kg] is the mass of the rod, lp = 0.1714
[m] is the distance from the arm to the centre of gravity of
the rod, Jb = 0.0038 [kgm2] is the inertia of the arm and
gears, r = 0.2159 [m] is the length of the pendulum arm,
α is the pendulum angle, θ is the arm angle and u is the
input torque. Define the state vector as x =

[
θ α θ̇ α̇

]T
.

The control problem consists of two parts: the swing-
up and stabilization. For the swing-up, a destabilizing
PD-controller is designed, that destabilizes the stable
equilibrium point corresponding to α = 0 [rad] and
eventually swings up the pendulum. The control law
takes the form of a positive feedback controller, with an
additional term δ whose value is to be determined by the
ESC-MPC algorithm:

u = −θ + (Pα+Dα̇) + δ (16)

For this purpose, (13) is implemented in a Model Pre-
dictive control scheme which determines the sub-optimal
future control inputs. The cost function to be evaluated is

Jk =
N∑
i=1

(
xTQx+ uTRu

)
(17)

where Q is a positive scaling matrix, R is a positive
scaling constant and N is the prediction horizon length. A
simulation is performed on the discretized system using the
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following numerical values: N = 5, Q = diag([1 5 0 0]),
R = 0.1, α = 0.01, kg = 0.005, ε = 1 P = 0.1, D = 10−4

and the dither signal is:

dk = 0.001 sin(1.5ik), i = 1 : N, k = 1 : M (18)

where M is the length of the control horizon to satisfy
|α| ≤ 10π/180 [rad], i.e. the point where a stabilizing state
feedback takes over to stabilize the pendulum at its upright
position.

The results of the simulation study are presented in Figure
1. The ESC results are compared to the case where δ = 0
where the optimal δ MPC control moves are computed
using the MATLAB optimization toolbox (fmincon). The
results indicate good controller performance for the ESC-
MPC control architecture. A significant increase in per-
formance is realized compared to the pure PD swing-up
controller and the performance is as good as a full iterative
optimization method is used.
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−100
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100
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300

time [s]

α
 [
d
e
g
]

 

 

PD

PD+MPC,fmincon

PD+MPC,ESC

Fig. 1. Pendulum angle α as a function of time during
swing-up and stabilization of the inverted pendulum.
Simulation results

5.2 Experimental study

The inverted pendulum swing-up and stabilization control
problem discussed in the previous section is applied to an
experimental setup. Again the Quanser inverted pendulum
setup is considered as described in the previous section.
The calculated input torque is converted to an input volt-
age to the DC motor. The ESC-MPC control architecture,
using (15) as the plant model for the prediction, is imple-
mented and experiments are performed with the following
numerical values: α = 0.05, kg = 9 · 10−5, P = 0.08,
D = 10−4 and the amplitude of the dither signal (18)
is tuned to 5 · 10−4. The swing-up using just the pure
PD destabilizing controller is also investigated. The pen-
dulum angle for both experiments are presented in Figure
2. The experimental results demonstrate that the ESC-
MPC approach provides a significant increase in controller
performance despite the fast nature of this process. The
corresponding cost function profile is depicted in Figure 3.
The cost function is effectively minimized and converges
effectively to zero. Correspondingly, the output converges
to the required setpoint. The corresponding control input δ
determined by the ESC-MPC algorithm is shown in Figure
4.

Due to the high nonlinearity of this process and fast nature
of its dynamics, it must be sampled at a fast rate (1000
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α
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Fig. 2. Pendulum angle α as a function of time during
swing-up and stabilization of the inverted pendulum.
Experimental results.
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Fig. 3. Cost function profile. The swing-up controller is
active on the left side of the dashed line, a state-
feedback stabilizing controller is active on the right
side.
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Fig. 4. Controller input δ determined by the MPC-ESC
algorithm.

[Hz]). This limitation practically prevents the implemen-
tation of iterative nonlinear optimization methods for the
implementation of MPC. The proposed ESC-MPC control
architecture, in contrast, is capable of evaluating the sys-
tem at this frequency and from the experimental results
it can be concluded that ESC provides a valuable alterna-
tive for fast MPC computations. The implementation of
ESC to MPC is straightforward and although the control
architecture can be affected by poor tuning of several
parameters, a fast controller resulting in high performance
can be obtained using the proposed algorithm.

6. CONCLUSION

In this paper, an alternative ESC technique for unknown
discrete-time dynamical systems was proposed. The tech-
nique is based on the time-varying estimation of the un-
known gradient that is suitable for a very general and
accurate parameterization of the unknown cost function.
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A novel application of ESC for MPC is also considered.
It is shown, both in simulation and experiments, that the
proposed ESC technique can be used to compute MPC
controls effectively. Future work will be devoted to the ap-
plication of ESC for robust MPC in presence of uncertain
process models.
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7. PROOF OF THEOREM 1

We provide a sketch of the proof. By the assumption on the
x̃ dynamics, it can be assumed that there exists a function
V (x) such that

V (x̃k+1)− V (x̃k) ≤ εLV Lπ(kgLθ +D)− α3(‖x̃k‖)
for constants LV , Lπ, Lθ, D and α3. The reduced order
dynamics consist of the extremum seeking controller and
the parameter estimation scheme at the quasi steady-state
xk = π(uk).

ũk+1 = ũk − εkg θ̂k + εdk

¯̂
θk+1 = Proj

[
θ̂k +

ε

α
Σ−1
k φk(I +

1
α
φTk Σ−1

k φk)−1(ek),Θ0

]
.

The Lyapunov function Wk = θ̃Tk Σkθ̃k can be shown to be
such that:

Wk+1 −Wk ≤ 4αU

(
ε2c2 +

ε2

α2
L2
fL

2
h(L2

F ‖x̃k‖2 + ε2L2
U )
)

− (1− α− 2α2)αLθ̃Tk θ̃k − θ̃k
T
φkQkφ

T
k θ̃k.

for some constants Lf , Lh, LF , LU , αU and αL, Next, we
pose the Lyapunov function Vk = Vk + Wk. Its rate of
change is given by:
Vk+1 − Vk ≤ −(1− α− 2α2)αL‖θ̃k‖2

− α3(‖x̃k‖) + ε2K1‖x̃k‖2 + ε2K2 + εK3

where K1 = 4αu 1
α2L

2
fL

2
hL

2
F , K2 = 2αUc2 +2 1

α2L
2
fL

2
hε

2L2
U

and K3 = LV Lπ(kgL1+D). Finally, we pose the candidate
Lyapunov function Uk = ũTk ũk. It is easy to show that by
combining Uk and Vk, the following inequality is obtained:
Uk+1 + Vk+1 − Uk − Vk ≤

− (1− α− 2α2 − εkg
kq

)αL‖θ̃k‖2 − α3(‖x̃k‖) + ε2K1‖x̃k‖2

− (2εkgLg − εkgkq − εkd)‖ũk‖2 + ε2K2 + εK3 + εK4

where K4 = kg(kg + ε)L1 + (1 + ε + 1
kd

)D. As a result,
it follows that if, for some positive constants kd and
kq, kg, ε and α are chosen such that: (1 − α − 2α2 −
ε
kg
kq

) > 0, (2εkgLg − εkgkq − εkd) > 0 and −α3(‖x̃k‖) +
ε2K1‖x̃k‖2 < 0, then ‖ũk‖2 enters an O(ε(K3 + K4))
neighbourhood of the origin. And therefore, there exists an
ε∗ such that ∀ε ∈ (0, ε∗), the input uk enters an O(ε(K3 +
K4)) neighbourhood of the unknown optimum u∗.
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